Методы изучения микромира. Ускорители.

В.И. Тельнов

Новосибирский Государственный университет

План

- Методы изучения микромира;
- Типы, основные принципы, и характеристики современных и планируемых ускорителей;
- протон-протонные, протон-антипротонные накопители;
- электрон-позитронные накопители;
- линейные e+e-, үе, үү коллайдеры;
- мюонные коллайдеры;
- новые методы ускорения;
- выведенные пучки;
- космические частицы.

Для чего нужны ускорители?

 $E_1 \sim E_0 \frac{2E_0}{m_2}$

Встречные пучки дают очень большой выигрыш при E>>m. Встречные электрон-позитронные пучки 1x1 ГэВ эквивалентны 4x10³ ГэВ позитроны на неподвижных электронах.

Первые встречные пучки: e⁻e⁻ ВЭП-1, Stanford, ~1965 e⁺e⁻ ВЭПП-2, 1966

, 1м ,

Synchrotron B-2S

2E = 90 MeV - 320 MeV, Exps 1965-1967 :

 electron-electron elastic scattering (in parallel to Princeton-Stanford Rings);

First electron-electron colliding beam experiments – 1965

VEP-1

Диаграмма Ливингстона

 $E_{\mu M} = 2E_0$ для электронов; $E_{\mu M} \sim (1/6) 2E_0$ для точечных объектов (кварков и глюонов) в протоне.

Типы ускорителей

1

- Электростатические
 - (Ван-Де-Граф,1931), до ~10 МэВ
 - Циклотрон (Лоуренс, 1931)

Для нерелятивистских частиц (протонов и ионов низкой энергии).

$$\frac{mv^2}{R} = \frac{eBv}{c} \Longrightarrow T = \frac{2\pi R}{v} = \frac{2\pi mc}{eB}$$

Т не зависит от энергии при B=const, т.е. при $\omega_{B^{H}}$ = const, B=const будет ускоряться, можно иметь непрерывный ток. Не годится для релятивистских скоростей ($\gamma mv^2/R = eBv/c$).

Фазотрон. Как циклотрон, B=const, но ω меняется с энергией, работает при релятивистских скоростях. Ускоряет короткие сгустки, т.к. ω меняется. Дубна, 1949, протоны до 700 МэВ.

Циклотрон Лоуренса, 1938

The cyclotron. The positive ions created inside the machine are repeatedly accelerated between the duants - they make bigger and bigger circles perpendicular with the respect to the field direction.

Типы ускорителей (продолжение)

Изохронный циклотрон – циклотрон, ω = const, а поле В зависит от R, это компенсирует релятивистские эффекты,

Е_{тах} ~ 1 ГэВ, может давать непрерывный ток (т.к. все параметры не зависят от времени.

Синхрофазотрон. Частицы движутся по дорожке с постоянным радиусом, В и ω меняются с Е (как надо).

Брукхейвен	1958	33 Гэв	p
ЦЕРН	1960	23	p
Серпухов	1967	76	p
Батавия, FNAL	1972	400 -1000	р-анти-р
ЦЕРН	1976	400-600	р-анти-р
ЦЕРН	2008	14000	pp

Типы ускорителей (продолжение)

Микротрон. Для электронов. За оборот ∆Е~mc².

$$T_{1} \approx \frac{2\pi (mc^{2} + \Delta E)}{eBc} = \mu T_{cev}; \qquad \Delta T = \frac{2\pi \Delta E}{eBc} = \nu T_{cev}$$

$$\Delta E \approx mc^{2} \nu / (\mu - \nu) = (ecB / 2\pi T_{cev})\nu \qquad E_{n} = \Delta E (\mu / \nu + n - 1)$$

$$\mu = 2, \nu = 1 - фундаментальная мода \implies \Delta E \approx mc^{2}$$

Нужно $\Delta E \sim mc^2$

Может работать в непрерывном режиме: (B=const, ω =const)

Типы ускорителей (продолжение)

Синхротрон - частный случай синхрофазотрона для электронов, v/c \rightarrow 1. $\omega_{B^{H}}$ = const, R = const, В пропорционально Е. E_{max} для электронов ограничена потерями на синхротроное излучение.

Бетатрон. Нарастающее во времени магнитное поле индуцирует электрическое поле Е

$$E2\pi R = -\frac{1}{c}\frac{\partial \Phi}{\partial t}; \quad \Phi = \overline{B}S; \quad R = \frac{pc}{eB}$$

R = const при $B(t) = \frac{1}{2}\overline{B}(t)$

 $E \sim 20-50$ МэВ для медицины, очень простые! $E_{max} \sim 300$ МэВ

Линейные ускорители

Для протонов (нерелятивиских частиц) Для электронов (релят. част) Внутри трубок поля нет, между трубок попадает в ускоряющую фазу

Диафрагмы делают фазовую скорость равной скорости электронов (~с).

При ускорении вдоль скорости излучение очень мало! (При движении в кольцах, ускорение перпендикулярно скорости и $dE/dt \sim \gamma^2$).

Ускорители на высокую энергию

• Протоны
$$R = \frac{pc}{eB} = 33 \frac{E(\Gamma \ni B)}{B(\kappa \Gamma c)}$$
, м

В ~ 50-100 кГс =5-10 Т, R ~ 5 км (2 π R=27 км, CERN), 2E_{max} = 14 ТэВ (LHC- Большой Адронный Коллайдер, начало работы 2009 год). Есть планы в будущем удвоить энергию. До 2009 г макс. энергия была у коллайдера Tevatron (2E=2 TeV), FNAL).

 Электроны-позитроны излучают за оборот

$$\Delta E = \frac{4\pi e^2 \beta^2 \gamma^4}{R} \propto \frac{E^4}{R}$$

При R= 5 км и E=100 ГэВ, $\Delta E \sim 2$ ГэВ, Р/пучок ~ 20 МВт, (от сети > 200 МВт). Это предел (LEP-II, закончил работу в 2000 г., 2E=210 ГэВ).

Планируется создание линейных e+e- коллайдеров на энергию 500-3000 ГэВ

Автофазировка (продольное движение)

Напряжение на резонаторе и положение частицы

U

Устойчиво при $\partial T/\partial E > 0$, (см. рис)

Устойчиво при $\partial T/\partial E < 0$, на левом

Возникают «синхротоннные» колебания продольной координаты частицы в пучке и ее энергии относительно равновесной энергии.

Поперечная фокусировка

Слабая фокусировка поворотными магнитами

Сильная фокусировка

Кроме поворотных магнитов в кольце есть специальные квадруполные линзы, которые по одной координате фокусируют, по другой – дефокусируют. Результат совместного действия (при определенном расстоянии между линзами) – сильная фокусировка.

Слабая: Дубна, 10 ГэВ, 1957 год, вес 36000 тонн! Сильная: Брукхейвен, 33 ГэВ, 1958, вес 3000 тонн (если бы была слабая, то 1 млн.тонн).

Квадрупольная линза.

$$B_y = -cx, F_x \sim x$$

$$B_x = -cy, F_y \sim -y$$

 σ – сечение реакции, $\sigma_{x_{y}} \sigma_{y}$ – поперечные размеры пучков. Фазовый объем (эмиттанс) пучка $\varepsilon_{x} = \sigma_{x} \theta_{x} =$ поперечный размер * на угловой. При ускорении от E₁ до E₂ $\varepsilon_{2} = \varepsilon_{1} E_{1}/E_{2}$. В месте встречи $\sqrt{\frac{z^{2}}{1-z^{2}}}$

$$\sigma_x = \sigma_{x,o} \sqrt{1 + \frac{z}{\beta^2}}; \qquad \sigma_{x,o} = \sqrt{\varepsilon \beta}$$

Здесь β - (бэта-функция фок. системы) ~ σ_z (длина пучка).

Для получения высокой светимости нужны пучки с малыми размерами, для этого необходимо получать пучки с малыми эмиттансами

Охлаждение пучков

Радиационное затухание на е⁺е⁻накопителях.

ДПри излучении теряется как поперечный, так и продольный импульсы. Продольный импульс компенсируется СВЧ (ускоряющим резонатором).

Равновесный размер: за счет флуктуаций числа испущенных фотонов.

Получение позитронов

тормозное излучение рождение пар

Получение и охлаждение протонов и антипротонов

Получение анти-протонов

р р, анти-р
$$p+p=p+p+p+\overline{p}$$

Электронное охлаждение протонов (Г.Будкер, 1966)

Протоны охлаждаются до температуры электронов.

Продольное магнитное поле дает эффект «замагничивания», поскольку Ларморовский радиус электрона меньше характерных прицельных

параметров и протон чувствует среднюю координату электрона.

Это существенно понижает эффективную температуру электронов.

Время охлаждения уменьшается с 1 сек до 10^{-3} сек, $T_p \sim 1 \text{ K!}$

Стохастическое охлаждение протонов.

• Метод Ван-Дер-Мейера

Измеряется положение центра тяжести пучка и по хорде посылается сигнал, чтобы ударить по пучку в нужную сторону. Процесс занимает много часов.

Реализован на р-анти-р коллайдере SPS (CERN), где в 1980 г. открыли W и Zбозоны (Нобелевская премия)

Пути к высоким энергиям

Ways to high energies:

1. Proton colliders.

Now: TEVATRON (FNAL, US), 2E = 2 TeV. Future: LHC(CERN), ~ 2007, 2E = 14 TeV. Far future: VLHC, $2E \sim 100$ TeV

- 2. e^+e^- colliders
 - Storage rings

the last (due to synch. rad.) LEP(CERN), 2E = 200 GeV, $2\pi R = 27$ km, synch. rad power about 20 MW, AC power ~ 100 MW.

• Linear Colliders

SLC(SLAC) (1989-1999), $2E_0 = 90$ GeV.

The next generation of LC:

Collider	Leader	2E	Zero	Techn.
		(TeV)	Des.Rep.	Des.Rep.
VLEPP	BINP	0.5 -1	terminated	
NLC	SLAC	0.5-1	1996	
JLC	KEK	0.5-1	1997	
TESLA	DESY	0.5-0.8	1997	2001
CLIC	CERN	0.5–5	2007	
ILC	Japan	0.25-1	2007	2013

3. Muon colliders.

≥ 2040 ? (Snowmass 2001)

Why LC is necessary?

LHC(pp) 2E = 14 TeV 2007 LC(e⁺e⁻) $2E = 0.5-1 \text{ TeV} \sim 2012$

- 1. $E_{eff}(pp) \sim \frac{1}{6} \times 2E_p$ $E_{eff}(e^+e^-) = 2E_e$ $p \equiv 3q + gluons$
- difference in energies is not big
- 2. Historically

 $pp(p\bar{p})$ discovered c, b, t quarks, W, Z - bosons e^+e^- discovered c-quark, τ lepton, g gluon.

With pp it is easier to reach higher energy

<u>But</u>, main results on c, b, W, Z, τ have been obtained and the SM has been tested with a very high precision at e^+e^- collidres

<u>Because</u> in e^+e^- collisions

- a) simpler initial state
- b) much lower backgrounds (no strong interactions)
- c) much higher accuracy

LHC - search for signatures of new phenomena

LC - gives physics answer to the new phenomena

Физическая программа

Outline of LC physics program

Origin of mass, structure of vacuum

Higgs boson, $M_H \sim 115 - 200$ GeV (LEP data)

 $e^+e^- \rightarrow ZH$, $e^+e^- \rightarrow H\nu\bar{\nu}$, $\gamma\gamma \rightarrow H$

Measurement of H-branchings with a high accuracy to test $\lambda_f \propto m_f$

На LHC в 7.2012 открыли хиггсовский бозон с массой 125 ГэВ!

Supersymmetry (between fermions and bosons)

$$e(1/2), \mu(1/2), \dots, q(1/2), W(s = 1)$$

 \Leftrightarrow
 $\tilde{e}(0), \tilde{\mu}(0), \dots, \tilde{q}(1/2), \tilde{W}(1/2)$

Supersymmetry is needed to cancel divergences in theories.

Supersymmetic particles are primary candidates for dark matter in Universe ($\rho_{dark} \sim 2\rho_{barionic}$)

Expected mass spectrum of SUSY particles in TeV region

All these particles can be detected and precisely studed at LC

Great physics !

На LHC этого пока не видят

Стандартная модель

ests of the Standard Model - EPS 2005 - July 25 - Sijbrand de Jong

Линейные коллайдеры

Достоинства:

(почти) нет излучения при ускорении, энергия по сравнению с кольцевыми накопителями может быть во много раз больше (реально на порядок).

Проблемы:

- Требуется высокий темп ускорения;
- Очень малые размеры пучков (0.1 мкм х 0.001 мкм);
- Излучение при столкновении пучков.
- Разрабатывались три проекта на энергию 500-1000 ГэВ:

TESLA (Europe), JLC (Japan), NLC(USA)

В 9.2004 было решено строить один международный свехпроводяший коллайдер (как TESLA) на энергию 2E=0.5-1 ТэВ, ILC (International Linear Collider). Начало строительства ~201..? Все зависит от результатов с LHC (наличие новой физики). Следующий возможный проект на 3000 ГэВ: CLIC (CERN)

Линейные e⁺e⁻ коллайдеры (проекты)

CLIC

NLC

6-2004 8400AR

ILC Status

ALC: N

61.01

-

Star A Martin Strept Martin Coll Strept

(Rection)

ILC superconducting cavities, v=1.3 GHz

1 m

Q>10¹⁰ High Gradient (31.5 MV/m→35 MV/m)

2E=250-500 GeV, upgradable to 1000 GeV

ILC, since LCWS 2017

At present Japan consider ILC with 2E=250 GeV, without any words about possible upgrade (but possible). Thus the cost was reduced by 40% compared to 500 GeV.

This energy is OK for $e+e-\rightarrow ZH$ (no tt) and for $\gamma\gamma \rightarrow H$ as well

2 Detector Concepts: Detailed Baseline Design

- Large R with TPC tracker
 - 32 countries,
 - 151 institutions,
 - ~700 members
- B=3.5T, TPC + Si trackers
- ECal: R=1.8m

- High B with Si strip tracker
 - 18 countries,
 - 77 institutions,
 - ~240 members
- B=5T, Si only tracker
- ECal : <mark>R=1.27</mark>m

2.2022 – решение о строительстве не принято (японское правительство ...)

Known physics, ILC stages

- 2E=250 GeV Higgs boson
- **350** top quark
- 500 ZHH −Higgs self coupling
- 500 and higher ttH top Yukawa coupling
- 1000 and higher Beyond

Compact Linear Collider (CLIC)

CLIC accelerating structure

Outside

11.994 GHz X-band
100 MV/m
Input power ≈50 MW
Pulse length ≈200 ns
Repetition rate 50 Hz

HOM damping waveguide

Inside

25 cm CLIC Project Review, 1 March 2016 6 mm diameter beam aperture

The feasibility of the CLIC scheme has been established. CLIC proposes a staged approach to reach 3 TeV: Stages with 500fb-1 at <500 GeV, 1500fb-1 at 1-2 TeV, 2000 fb-1 at 3 TeV; L= 2.3×10^{34} cm⁻² s⁻¹ at 500 GeV

Decision: 2018-2019 ???? Preparation stage: ~5 years Construction could start in 2024-25; commissioning in ~2033. 2.2022 – решения о строительстве пока нет

ILC and CLIC parameters upgrage to (3-4)10³⁴ is foreseen

	unit		ILC			CLIC	
$2E_0$	GeV	250	500	1000	250	500	3000
$L_{\rm tot}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.75	1.8	4.9	1.37	2.3	5.9
L_{geom}	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.37	0.75	2.61	0.82	1.42	4.29
No. Higgs/yr(10^7 s)	1000	23	49	—	34	44	446
Length	km	21	31	48	13.2	13.2	48.3
P (wall)	MW	128	162	301	225	272	589
Pol. e^- /Pol. e^+	%	80/30	80/30	80/30	80/0	80/0	80/0
Accel. gradient	MV/m	31.5	31.5	31.5/45	40	80	100
N per bunch	10^{10}	2	2	1.74	0.34	0.68	0.372
Bunches per pulse		1312	1312	2450	842	354	312
Bunch distance	ns	554	554	366	0.5	0.5	0.5
Rep. rate	Hz	5	5	4	50	50	50
Norm. emit. $\varepsilon_{x,n}$	mm-mrad	10	10	10	0.66	2.4	0.66
Norm. emit. $\varepsilon_{y,n}$	mm-mrad	0.035	0.035	0.03	0.025	0.025	0.02
β_x at IP	mm	13	11	11	8	8	4
β_{y} at IP	mm	0.41	0.48	0.23	0.1	0.1	0.07
σ_x at IP	nm	729	474	335	150	200	40
σ_{v} at IP	nm	7.66	5.9	2.7	3.2	2.3	1
σ_z at IP	mm	0.3	0.3	0.225	0.072	0.072	0.044
Ener. loss. $\delta E/E$	%	0.95	4.5	10.5	1.5	7	28
Фотонный коллайдер

Физическая программа фотонных коллайдеров

$$\dot{N}_{\gamma\gamma \to h} = L_{\gamma\gamma} \times \frac{dL_{\gamma\gamma}M_h}{dW_{\gamma\gamma}L_{\gamma\gamma}} \frac{4\pi^2\Gamma_{\gamma\gamma}(1+\lambda_1\lambda_2)}{M_h^3} \equiv L_{\gamma\gamma} \times \sigma^{eff}$$

Charged pair production in e⁺e⁻ and $\gamma\gamma$ collisions.

(S (scalars), F (fermions), W (W-bosons); $\sigma = (\pi \alpha^2/M^2) f(x)$, beams unpolarized)

Cross sections for charged scalars, $2E_0 = 1$ TeV

Физ.программа үү, үе коллайдеров

Gold-plated processes at photon

colliders

Reaction	Remarks			
$\gamma \gamma \rightarrow h_0 \rightarrow \overline{b}b$	\mathcal{SM} (or \mathcal{MSSM}) Higgs, $M_{h_0} < 160 { m GeV}$			
$\gamma \gamma \rightarrow h_0 \rightarrow WW(WW^*)$	${\cal SM}$ Higgs, $140{ m GeV} < M_{h_0} < 190{ m GeV}$			
$\gamma\gamma \rightarrow h_0 \rightarrow ZZ(ZZ^*)$	\mathcal{SM} Higgs, $180 ext{GeV} < M_{h_0} < 350 ext{GeV}$			
$\gamma\gamma \rightarrow H, A \rightarrow \overline{b}b$	\mathcal{MSSM} heavy Higgs, for intermediate tan eta			
$\gamma\gamma \to \bar{f}\bar{f}, \ \bar{\chi}_i^+\bar{\chi}_i^-, \ H^+H^-$	large cross sections, possible observ. of FCNC			
$\gamma\gamma \rightarrow S[t\bar{t}]$	$t\overline{t}$ stoponium			
$\gamma e \rightarrow \bar{e}^- \bar{\chi}_1^0$	$M_{ar{e}^+} < 0.9 imes 2E_0 - M_{ar{\chi}_1^0}$			
$\gamma \gamma \rightarrow W^+W^-$	anomalous W interact., extra dimen.			
$\gamma e^- \rightarrow W^- \nu_e$	anomalous W couplings			
$\gamma\gamma \rightarrow WW + WW(ZZ)$	strong WW scatt., quartic anom. W , Z coupl.			
$\gamma\gamma \rightarrow t\bar{t}$	anomalous top quark interactions			
$\gamma e^- \rightarrow \overline{t} b \nu_e$	anomalous Wtb coupling			
$\gamma\gamma \rightarrow hadrons$	total $\gamma\gamma$ cross section			
$\gamma e^- \rightarrow e^- X$ and $\nu_e X$	structure functions (pol. and unpol.)			
$\gamma g \rightarrow \overline{q} q, \overline{c} c$	gluon distribution in the photon			
$\gamma\gamma ightarrow J/\psi J/\psi$	QCD Pomeron			

Мюонный коллайдер

Мюонный коллайдер(прод.)

Мюонные коллайдеры, программа, проблемы

• Мюоны в 200 раз тяжелее электронов, поэтому мало излучают при столкновении пучков. Они нестабильны, но, если из быстро охладить и разогнать, то за время жизни (увеличенной в гамма раз) они успеют столкнуться в кольцевом накопителе около 1000 раз.

Хигсовсий бозон будет рождаться как очень узкий резонанс (на е+е сечение резонансного рождения в 40000 раз меньше, за счет константы связи ~m²).

Основная проблема – охлаждение мюонов. Можно охладить за счет ионизационных потерь (излучение и ядерное взаимодействия малы и не мешают).

Мюонные коллайдеры появятся не скоро (хотя работа ведется активно), но есть промежуточная физическая программа: изучение распада мюона с нарушением лептонного числа; нейтринные пучки очень высокой интенсивности.

Сравнение размеров коллайдеров

Мюонный коллайдер имеет меньший размер (при тех же энергиях)

ILC e^+e^- (.5 TeV)

CLIC
$$e^+e^-$$
 (3TeV)
FNAL site Mu-Mu (4 TeV)

Одна из «забавных» проблем мюонного коллайдера – это фон, который создают нейтрино на поверхности Земли. Закапывание глубоко под землю не помогает.

Higgs factory colliders

- Linear e+e- collider:
 - > ILC
 - > CLIC
 - X-band klystron based
- Circular e+e- collider:
 - ► LEP3
 - ➤ TLEP
 - SuperTRISTAN
 - Fermilab site-filler
 - China Higgs Factory (CHF)
 - SLAC/LBNL big ring
- Muon collider
 - Low luminosity
 - High luminosity
- γγ collider:
 - ILC-based
 - CLIC-based
 - Recircul. linac-based SAPPHiRE + HERA, Tevatron rings
 - SLC-type

e+e-: Higgs measurement at 2E₀=240 GeV

Higgs physics at muon collider

Resonance H production: $\sigma(\mu^+\mu^-\rightarrow H)\approx 40000 \sigma(e^+e^-\rightarrow H)\approx 70 \text{ pb}$

- The Higgs width is about 4 MeV, the muon collider with $\delta E/E=0.003\%$ can measure the Higgs width directly with an accuracy 5% (comparable that in e+e-).
- The Higgs mass can be measured with an accuracy 0.1 MeV, 100 times better than in e+e-.

The number of Higgs boson is about 2500/year at expected $L \sim 10^{31}$ (small L due to transverse-longitudinal emittance exchange for obtaining a high monochromaticity).

Higgs at photon colliders

Higgs signal

 $M_h = 120 \text{ GeV}$

bb(g)

cc(g)

τ'τ resolved

140

uu,dd,ss

160 W_{corr} [GeV]

At nominal luminosities the number of Higgs in $\gamma\gamma$ will be similar to that in e+e-

TLEP (Triple LEP) – e+e- кольцевой \rightarrow FCC-ее

Beyond HE-LHC : new tunnels in Geneve area, $2\pi R$ =100 km

e+e- (2E=350-400 GeV), pp (2E=100 TeV)

Figure 9. Two possible location, upon geological study, of the 80 km ring for a Super HE-LHC (option at left is strongly preferred)

Circular Higgs factories at CERN & beyond

50

Higgs physics in e+e- collisions

Tagging Z in e+e- \rightarrow ZH one can measure all Br(H), even invisible decays width. One can measure the Higgs total width: $\Gamma(H) \sim \sigma(e^+e^- \rightarrow ZH)/Br(H \rightarrow ZZ)$ and $\Gamma(H) \sim \sigma(WW \rightarrow H)/Br(H \rightarrow WW)$

At linear colliders $L \sim 10^{34}$, $N_H \sim 20000$ /year or 10^5 for life of the experiment; At circular collider with C~100 km and several IP one can have $N_H \sim 10^6$.

Circular Higgs e+e-factories

Beginning:

- 1. A.Blondel and F.Zimmermann, A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson, arXiv:1112.2518 (Dec. 2011)
- 2. K.Oide, Super-Tristan, talk at KEK, Feb.2012 (crab-waist scheme)
- 3. V.Telnov, Restriction on the energy and luminosity of e+e- storage rings due to beamstrahlung, arXiv:1203.6563 (March 2012), PRL 110,114801 (2013).
- A. Blondel...V.Telnov.., LEP3: A High Luminosity e+e- Collider to study the Higgs Boson, arXiv:1208.0504 (Aug.2012) (Triple-LEP (TLEP) with C=80 km is discussed)

HF2012-First Higgs factory workshop (November, 2012, FNAL) – already 7-8 proposals of Circular e+e- Higgs factories around the world on the energy 2E=230(H)-370(tt) GeV.

Many e⁺e⁻ circular Higgs factories are being studied around the world

Ci	rcular e ⁺ e ⁻ Collider as a F	liggs Factory
	 16 km (Fermilab site-filler) 	USA
_	• 21 km (Protvino)	Russia (free tunnel)
vember	• 27 km (LEP3)	
12	 40 km (SuperTRISTAN-40)- 	Japan
	• 50 km (CHF-1)-	China
	• 70 km (CHF-2)-	China
	• 80 km (TLEP, SuperTRISTAN-80)-	Swiss, Japan
	• 233 km (VLLC)-	USA

At present: two projects are very seriously considered

FCC-ee, FCC-hh (CERN) C=100km, $2E_{e+e-}=90-400 \text{ GeV}$, $2E_{pp}=100 \text{ TeV}$ CEPC, SppC (China) C~54 \rightarrow 100km, $2E_{e+e-}=240 \text{ GeV}$, $2E_{pp}=70\rightarrow$ 100 TeV

FCC (ee, hh) – Future Circular Collider CEPC – Circular Electron Positron Collider SppC – Super proton proton Collider

Main arguments for circular e+e- colliders

During last 25 years linear colliders were considered as best candidates for the next collider for precision study below 1-3 TeV, why ring e+e-colliders again?

Advantages

1) No new physics is found up to now by LHC for exception of low mass Higgs boson. The energy 2E=230 GeV needed for study H in e+e- collision can be reached by circular e+e- colliders.

2) Ring colliders are easier and luminosity can be higher than at linear colliders at 2E=230 GeV (and much higher at Z), can provide higher accuracy needed for observation of new physics (in Higgs and Z decays). Top threshold 2E=350 GeV can be reached.

3) Ring tunnels (C~100 km) can be used further for highest energy pp (or muon) colliders. It is a very attractive long-term strategy.

Disadvantage: Presence of new physics in the region 2E=350-3000 is still not excluded, this region can be covered only by linear colliders

Beam lifetime due to beamstrahlung

The electron loses the beam after emission of beamstrahlung photon with an energy greater than the threshold energy $E_{th}=\eta E_0$, where a *ring energy acceptance* $\eta \sim 0.01-0.02$.

The beam lifetime due to beamstrahlung (V. Telnov)

$$\tau \approx 6. \frac{2\pi R}{c} \frac{\sqrt{6\pi} r_e \gamma u^{3/2} e^{1.225\iota}}{\alpha^2 \eta \sigma_z}$$

$$u = \eta \frac{\alpha \sigma_x \sigma_z}{3\gamma r_e^2 N}, \quad \alpha = e^2/\hbar c$$

The requirement of the lifetime 30 min imposes a new restriction on the beam parameters

$$\frac{N}{\sigma_x \sigma_z} < 0.1 \eta \frac{\alpha}{3 \gamma {r_e}^2}$$

Kick-off meeting 12-15 Feb. 2014

FCC project (CERN)

FCC-hh hadron collider with 100TeV proton cms energy

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- FCC-ee a lepton collider as a potential intermediate step
- FCC-eh lepton hadron option
- International collaboration
- Site studies for Geneva area
- CDR for EU strategy update in 2018

tentative time line and milestones

F. Zimmermann, IPAC14

FCC-hh baseline parameters

parameter	LHC	HL-LHC	FCC-hh	
c.m. energy [TeV]	14		100	
dipole magnet field [T]	8.33		16 (20)	
circumference [km]	26.7		100 (83)	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5 [→20?]	
bunch spacing [ns]	25		25 {5}	
events / bunch crossing	27	135	170 {34}	
bunch population [10 ¹¹]	1.15	2.2	1 {0.2}	
norm. transverse emitt. [µm]	3.75	2.5	2.2 {0.44}	
IP beta-function [m]	0.55	0.15	1.1	
IP beam size [µm]	16.7	7.1	6.8 {3}	
synchrotron rad. [W/m/aperture]	0.17	0.33	28 (44)	
critical energy [keV]	0.044		4.3 (5.5)	
total syn.rad. power [MW]	0.0072	0.0146	4.8 (5.8)	
longitudinal damping time [h]	12.9		0.54 (0.32)	

Hadron collider FCC-hh parameters

- Energy ۰
- Circumference •
- ٠
- Dipole field (3 TeV inject.) \sim 1 T (baseline) [1.2 T option] ٠
- **Bunch spacing** ٠
- Bunch population (25 ns) •
- **Emittance normalised** •
- #bunches •
- Stored beam energy •
- # Interaction Points ٠
- B*
- Luminosity •
- Synchroton radiation arc ~30 W/m/aperture (fill. fact. ~78% in arc) ٠

100 TeV c.m>

- ~ 100 km (baseline) [80 km option]
- Dipole field (50 TeV) ~ 16 T (baseline) [20 T option]
 - - 25 ns [5 ns option]
 - 1x10¹¹ p
 - 2.15x10⁻⁶m, normal.
 - 10500
 - 8.2 GJ/beam

Available from SPS/LHC today →3 TeV injector baseline for FCC-hh

2 main experiments

1.1 m [baseline] 5x10³⁴ cm⁻²s⁻¹ baseline]

machine protection

energy per proton beam \checkmark *LHC*: 0.4 GJ \rightarrow *FCC-hh*: 8 GJ (20x more !)

- kinetic energy of Airbus A380 at 720 km/h
- can melt 12 tons of copper, or drill a 300-m long hole

Cross sections vs \sqrt{s}

 \rightarrow With 10000/fb at \int s=100 TeV expect: 10¹² top, 10¹⁰ Higgs bosons, 10⁸ m=1 TeV stop pairs, ...

FCC-ee baseline parameters

parameter	LEP2	FCC-ee				
		Z	Z (c.w.)	W	н	t
E _{beam} [GeV]	104	45	45	80	120	175
circumference [km]	26.7	100	100	100	100	100
current [mA]	3.0	1450	1431	152	30	6.6
P _{SR,tot} [MW]	22	100	100	100	100	100
no. bunches	4	16700	29791	4490	1360	98
<i>N_b</i> [10 ¹¹]	4.2	1.8	1.0	0.7	0.46	1.4
ε _x [nm]	22	29	0.14	3.3	0.94	2
ε _y [pm]	250	60	1	1	2	2
β* _x [m]	1.2	0.5	0.5	0.5	0.5	1.0
β* _y [mm]	50	1	1	1	1	1
σ* _y [nm]	3500	250	32	84	44	45
σ _{z,SR} [mm]	11.5	1.64	2.7	1.01	0.81	1.16
$\sigma_{z,tot}$ [mm] (w beamstr.)	11.5	2.56	5.9	1.49	1.17	1.49
hourglass factor F_{hg}	0.99	0.64	0.94	0.79	0.80	0.73
L/IP [10 ³⁴ cm ⁻² s ⁻¹]	0.01	28	212	12	6	1.7
τ _{beam} [min]	434	298	39	73	29	21
FCC-ee Workshop Paris Oct 2014						ec

FCC-ee Workshop Paris Oct 2014

The luminosity at the Higgs energy 2E=250 GeV at FCC-ee is higher than at the ILC by one order of magnitude

_uminosity [10³⁴ cm⁻²s⁻¹

CEPC-SppC

Китай

CEPC is an 240 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70 TeV or higher pp collider **SppC**, to study the new physics beyond the Standard Model.

Проект непрерывно изменяется в сторону FCC (100 км, 100 ТэВ)

CepC/SppC study (CAS-IHEP), CepC CDR end of 2014, e⁺e⁻ collisions ~2028; *pp* collisions ~2042

高能所

G102

\$363

抚宁县

70 km

15.1 公理00

CepC, SppC

Qinhuangda^{oo}(秦皇岛)

easy access 300 km from Beijing 3 h by car 1 h by train **"Chinese Toscana"**

Image © 2013 DigitalGlobe Data SLO, NOAA, U.S. Navy, NGA, GEBCO S362 2013 Mapabc.com Image © 2013 TerraMetrics

Google earth

屾海关▷

CEPC-SppC Project Timeline (dream)

1st Milestone: pre-CDR (by the end of 2014) → R&D funding request to Chinese government in 2015 (China's 13th Five-Year Plan 2016-2020)

(2.2022) Решение о строительстве пока не принято

Muon collider as a Higgs factory

Parameters of 126 GeV µ+µ- Higgs factory

	unit	Low L	High L
$2E_0$	GeV	126	126
Luminosity per IP	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	0.001	0.01
Number of IPs		2	2
No. Higgs/yr(10^7 s) per IP	1000	5	50
Circumference	km	0.3	0.3
P (wall)	MW	100	125
Pol. μ^- and μ^+	%	10	10-20
N per bunch	10^{10}	200	500
Bunches per beam		1	1
Norm. emit. $\varepsilon_{x,n}$	mm-mrad	400	200
Norm. emit. $\varepsilon_{y,n}$	mm-mrad	400	200
β_x at IP	mm	60	40
β_{y} at IP	mm	60	40
σ_x at IP	μm	200	120
σ_{y} at IP	μm	200	120
σ_z at IP	mm	60	40
σ_{E}/E	%	0.003	0.003

The luminosity is 2-3 orders of magnitude smaller than at e+e- colliders, but the Higgs production cross section is 200 times larger

FNAL

COOLING -- Principle is straightforward...

Longitudinal:

Twin e+e- LC with energy recovery (ERLC)
The proposed LC scheme

- 1) LC consists of two parallel SC linac connected with each other with rf-coulpers, so that the fields are equal at any time. One line is for acceleration, the other for deceleration.
- Damping is provided by wigglers (no damping rings) at the "return" energy about E~5 GeV. The energy loss per turn dE/E~1/200. Damping is needed to reduce the energy spread arising from collision of beams.
- 3) In the presence of a return path, e + and e- are always correctly focused by their own FF.
- 4) The duration of one cycle (several seconds) is determined by the refrigeration system (rise of temperature on ~0.1 K at 1.8 K).

Possible luminosities vs power

2E=250 GeV

Table 2. Parameters of e^+e^- linear colliders ERLC and ILC, $2E_0 = 250$ GeV.

	unit	ERLC pulsed	ERLC pulsed	ERLC contin.	ERLC contin.	ILC	
		Nb	Nb	Nb ₃ Sn	Nb ₃ Sn	Nb	
		1.8 K	1.8 K	4.5 K	4.5 K	1.8 K	
		1.3 GHz	0.65 GHz	1.3 GHz	0.65 GHz	1.3 GHz	
Energy $2E_0$	GeV	250	250	250	250	250	
Luminosity \mathcal{L}_{tot}	$10^{36} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.39	0.75	0.83	1.6	0.0135	
P (wall) (collider)	MW	120	120	120	120	129(tot.)	
Duty cycle, DC		0.19	0.37	1	1	n/a	
Accel. gradient, G	MV/m	20	20	20	20	31.5	
Cavity quality, Q	10^{10}	3	12	3	12	1	
Length $L_{\rm act}/L_{\rm tot}$	km	12.5/30	12.5/30	12.5/30	12.5/30	8/20	
N per bunch	10^{9}	1.13	2.26	0.46	1.77	20	
Bunch distance	m	0.23	0.46	0.23	0.46	166	
Rep. rate, f	Hz	$2.47 \cdot 10^{8}$	$2.37 \cdot 10^{8}$	$1.3\cdot 10^9$	$6.5 \cdot 10^{8}$	6560	
$\epsilon_{x,n}/\epsilon_{y,n}$	10 ⁻⁶ m	10/0.035	10/0.035	10/0.035	10/0.035	5/0.035	
$\beta_{\chi}^*/\beta_{\chi}$ at IP	cm	2.7/0.031	10.8/0.031	0.46/0.031	6.8/0.031	1.3/0.04	
σ_x at IP	$\mu { m m}$	1.05	2.1	0.43	1.66	0.52	
σ_y at IP	nm	6.2	6.2	6.2	6.2	7.7	
σ_z at IP	cm	0.03	0.03	0.03	0.03	0.03	
$(\sigma_E/E_0)_{ m BS}$ at IP	γ_0	0.2	0.2	0.2	0.2	~ 1	

goal

Новые методы ускорения

Ускорение в плазме

короткий сгусток заряженных частиц (например электронов) двигаясь в плазме расталкивает в стороны электроны плазмы, создавая в плазме продольные электрические поля. Второй пучок, следующий за первым на определенном расстоянии будет находиться в ускоряющем поле, забирая энергию поля. Меняя лидирующий пучок можно разогнать второй пучок до высоких энергий с очень высоким темпом ускорения, порядка 0.1-1 ГэВ/см и выше.

В качестве лидирующего пучка испольцуют также лазерный пучок, но здесь есть проблема с дифракционной расходимостью.

Пока это находится на стадии разработок. Возможные области применения . . .

• Space charge of drive beam displaces plasma electrons

- Plasma ions exert restoring force => Space charge oscillations
- Wake Phase Velocity = Beam Velocity (like wake on a boat)

• Wake amplitude $\propto N_b/\sigma_z^2$

Вне атмосферы: р, α , ядра = 93:6:1 На уровне моря: в основном мюоны со средней энергией 2 ГэВ, μ :p = 100:3 при 1 ГэВ, 100:0.3 при 10 ГэВ, также есть <10% е, п. Поток: мюонов ~0.025 шт./сек/см², нейтрино солнечных 5х10¹⁰, нейтрино реликтовых 10¹² шт./сек/см² (еще не зарегистрированы).

Космические частицы сверхвысокой энергии

При 5 10¹⁹ eV должен быть завал спектра за счет взаимодействия протонов (ядер) с реликтовыми фотонами (рождение пионов). Современные и будущие ускорители (примеры)

m Bausteine der Pro- und der Hamburger Wissere dufts-

The most important achievements:

- •The first big super-conducting accelerator (p).
- •The first e-(e+) p collider.

 Detailed study of parton distribution functions in very wide q² range.

LEP highlights:

- Ultimate cyclic e+e- collider;
- "Three generation" proof !
- Detailed study of high energy range of Standard Model.
- Strong rise of Higgs mass limit.

Assembly welding of LHC magnets in the tunnel Начало работы 2009 г.

CERN Accelerator Complex (not to scale)

LHC

Present: long shutdown 2 2019-2020 \rightarrow 2021

goals –upgrade of the LHC injectors - preparation for E=7 TeV

Cooldown started in Oct.2020 several short circuit etc, requiring warm-up, delay > 4 month

Training to 7 TeV takes time, there is risk, 6.8 as target is discussed

The start of Run 3 March 2022

more stability, $\beta^*=25$ cm, optimized crossing angle

The luminosity is too high (pile up), will be lavelled dynamically:

1) offset (2011)

2) crossing angle (2017)

3) β^* (at the IP)

In Run 3 levelled L=2×10³⁴ up to 12 hours

In 2022 2022-2024 Total 2022-2024 ∫Ldt ~ 30-40 fb⁻¹ (reduced length 2022 run) 70-80 fb⁻¹/year 160-200 fb⁻¹ –doubled (Run-1+Run-2)

HL-LHC

Long term plan

Goal: ~250 fb⁻¹/year in ATLAS and CMS 3000 fb⁻¹ ~2038-2040

$$N_{\rm H} \sim 2 \times 10^8$$

Methods: N, β^* , ϵ + crab crossing

Conventional crossing

Both Rings Housed in Current PEP Tunnel

Framework : the CKM matrix

Some of the experiments

Работает в настоящее время L=10³³ (с,т фабрика)

Сharm/Tau Factory, разработана в ИЯФ и планировалось строительство, однако в настоящее время (2.2022) (почти) принято решение строить ее около г. Саров (новый центр физики-математики при ядерном центре)

Линейные коллайдеры

Линейные е⁺е⁻ коллайдеры

CLIC

NLC

6-2004 8400AR

World Record E_{acc} = 46.4 MV/m, **CW**

47 MV/m pulsed

International Linear Collider (ILC)

на базе сверхпроводящей технологии (как TESLA) на энергию 2E=500-1000 ГэВ.

Где и когда еще не решено

For higher energies – possibly, CLIC.

ыссеая рнузіся Будет отдельная лекция о применении ускорителей и детекторов в прикладных задачах

BASIC RESEARCH

The Time Tree of Accelerators