Взаимодействие частиц с веществом

В.И. Тельнов

Современная экспериментальная физика

Новосибирский Государственный университет

План

Заряженные частицы

- ионизационные потери
- радиационные потери
- многократное рассеяние
- черенковское излучение
- переходное излучение
- ядерное взаимодействие

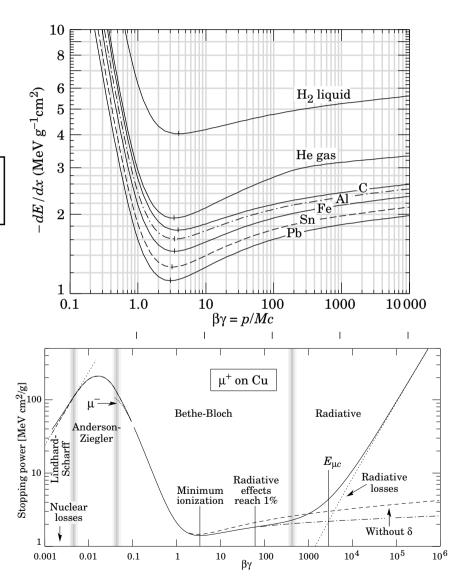
Фотоны

- фотоэффект
- комптоновское рассеяние
- рождение e⁺e⁻ пар

Нейтринные взаимодействия Дозиметрия

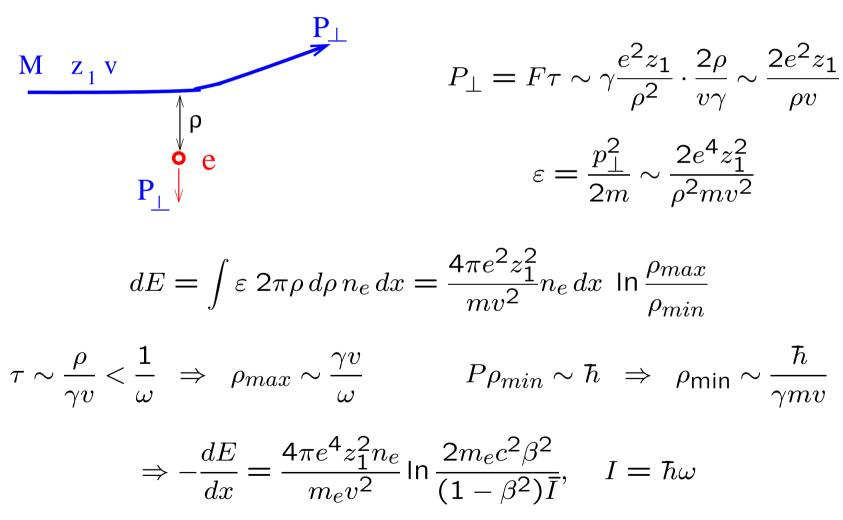
Ионизационыые потери

Ионизационные потери заряженных частиц на ионизации и возбуждение атомов. В широком интервале скоростей описываются формулой Блоха


$$-\frac{dE}{dx} = \frac{4\pi e^4 z_1^2 n_e}{m_e v^2} \left[\ln \frac{2m_e c^2 \beta^2}{(1-\beta^2)\bar{I}} - \beta^2 - \frac{\delta(v)}{2} \right]$$

$$-rac{dE}{
ho dx}pproxrac{0.3}{eta^2}rac{Z}{A}z_1^2\ln\left[...
ight]$$
 МэВ/г/см 2

При
$$z_1=1$$
 и $etapprox 1\Rightarrow$


$$-rac{dE}{
ho dx}\sim 0.3 imesrac{1}{2} imes (10-15)\sim 2$$
 МэВ/г/см 2

где v-скорость, $\beta=v/c$, z_1 заряд частицы, Z,A — заряд и ат. номер ядра, $\bar{I}\sim 12\cdot Z$ эВ — средний потенциал ионизации.

Классический вывод ф-лы ионизационных потерь

Поскольку ф-ла Рейзерфорда и квантовая ф-ла совпадают, то можно воспользоваться класической картиной.

δ — электроны

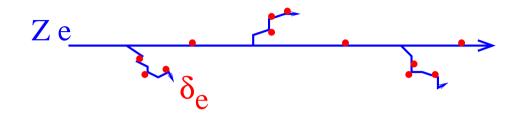
Потеря энергии в первичных столкновениях с атомными электронами $\varepsilon \propto 1/\rho^2, \ dN \propto \rho \, d\rho \propto d(\rho^2) \propto d\varepsilon/\varepsilon^2.$

$$\frac{dN}{d\varepsilon} = \frac{2\pi n_e z_1^2 e^4 x}{m v^2 \varepsilon^2} = \frac{\xi}{\varepsilon^2} \qquad \xi = \frac{0.15}{\beta^2} \frac{Z}{A} z_1^2 x_1 \text{ M} \ni \text{B}, \qquad x_1 \equiv x \rho_{\text{B-Ba}} \left[\text{Γ-cm}^{-2} \right]$$

Ионизац. потери равны (примерно) энергии δ - электронов

$$\frac{dN}{dx} = \int \varepsilon \frac{dN}{d\varepsilon} = \int \frac{\xi}{\varepsilon} d\varepsilon = \xi \ln \frac{\varepsilon_{max}}{\varepsilon_{min}} = \xi \ln \frac{\rho_{max}}{\rho_{min}}$$

т.е. ф-ла Бете Блоха, см. выше.


Например, для газов при нормальных условиях (NPT)

$$\frac{dN}{darepsilon}=\frac{6.7Z}{eta^2}\frac{darepsilon}{arepsilon^2}x$$
 , где х выражены в см и $arepsilon$ в эВ

Для Ar при $\beta \sim 1$, x=1 см ; $dN/d\varepsilon = 130 d\varepsilon/\varepsilon^2$

Вероятность передачи энергии более 5 кэВ равна 0.03 при средней потере на 1 см Ar примерно 2 кэВ, т.е. в распределении по потерянным энергиям есть "хвосты".

Первичная и полная ионизация

 n_p — число первичных столкновений n_{tot} — полное число конечных пар ионов-электронов

$$n_{tot} = \frac{\Delta E}{W} = \frac{$$
потерянная энергия средн. энергия на одну пару ионов

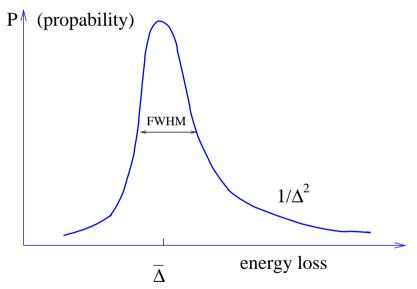
	Z	Α	E_{ex}	E_i	\overline{I}/Z	W(eV)	$MeV/g/cm^2$	n_p/cm	n_{tot}/cm
H_2	$2 \cdot 1$	2 · 1	10.8	15.9	15.4	37	4.03	5.2	9.2
He	2	4	19.8	24.5	24.5	41	1.94	5.9	7.8
N_2	$2 \cdot 7$	$2 \cdot 14$	8.1	16.7	15.5	35	1.68	15	56
Ar	18	40	11.6	15.7	15.8	26	1.47	29	94
Xe	54	131	8.4	12.1	12.1	22	1.23	44	307

$$n_{tot}/n_p \sim 2-6$$

Флуктуации ионизации

Е – потерянная энергия;

W – энергия, идущая на образование одной пары,


$$n=rac{E}{W}$$
 $rac{\sigma_n}{n}=\sqrt{rac{F}{n}}$ $F\sim 0.1-0.6$ — фактор; Фано

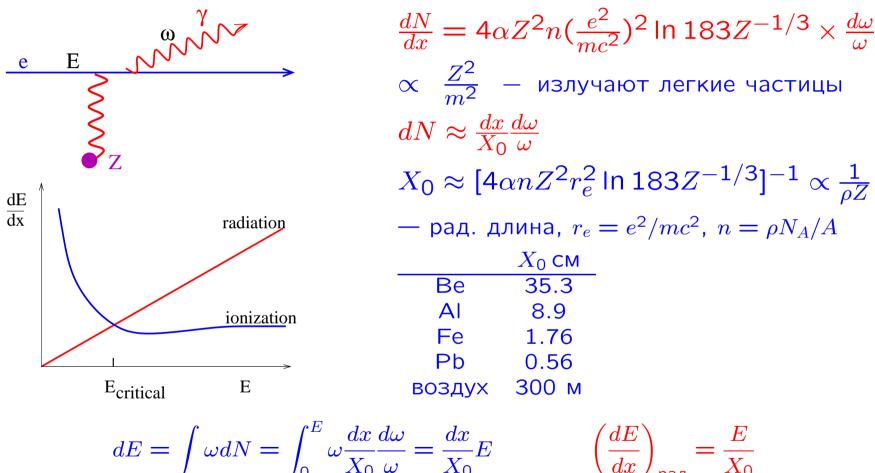
Например, в Ar поглотился фотон с энергией 6 кэВ (фотоэффект), $F\sim 0.4$, \Rightarrow

 $n\sim 6000/30\sim 200$ $\sigma_n/n\sim 0.04$ $FWHM/n=2.36\sigma_n/n\sim 0.1$ Обычно при регистрации ионизации используется газовое усиления сигнала за счет размножение электронов в сильном поле вблизи тонкой проволочки. При усилении происходят флуктуации, это приводит к дополнительному фактору: $F\Rightarrow F+\Phi$. $\Phi\sim 0.7$.

Флуктуации потерянной энергии для пролетающих частиц

В этом случае в добавок к флуктуациям числа пар ионов для фиксированной потерянной энергии флуктуирует и сама потерянная энергия. Два источника: флуктуирует число первичных столкновений и энергия передаваемая δ -электрону при столкновении. Второй фактор более существенный.

Для газов при NPT x=1 см $FWHM/\bar{\Delta}\sim 0.5=0.8.$

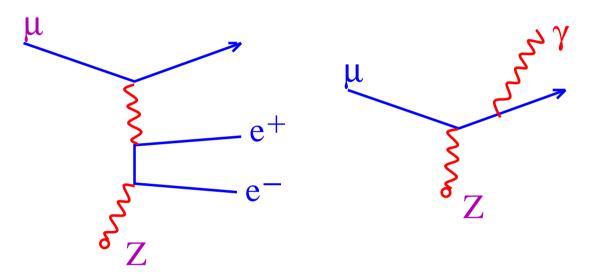

Для плотных веществ при x = 0.01 - 1 см $FWHM/\bar{\Delta} \sim 0.3$ - флукт. Ландау.

Для больших толщин ($\xi \gg \varepsilon_{max}$) стремится к Гауссу.

Измерение dE/dx используется для идентификации частиц. Для этого берут много счетчиков (~ 100) и суммируются не все, а около 50% минимальных амплитуд, при этом хвосты обрезаются и относительные флуктуации $\propto 1/\sqrt{N_{\rm счетчиков}}$. Ср. квадратичная точность составляет до 5 %.

Тормозное излучение

Электроны в поле атомных ядер испытывают ускорение и излучают фотоны. Атомные электроны дают в Z раз меньший вклад.



Рад. и иониз. потери равны при $E_{ ext{крит}} \sim 600/Z$ МэВ.

Рождение e⁺e⁻ пар заряженными частицами

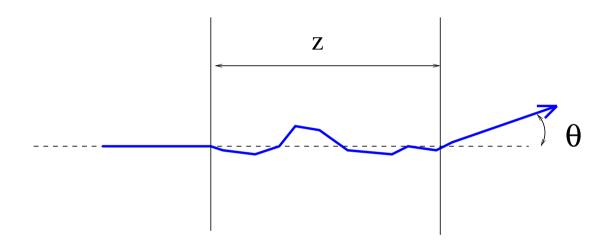
$$\mu$$
 + ядро $\rightarrow \mu + e^+ + e^-$ + ядро

Этот процесс важен для тяжелых частиц при высоких энергиях

рождение пар

$$\sigma$$
пар $\propto rac{lpha^4}{m_e^2}$

тормозное излучение


$$\sigma_{ extsf{TOPM}} \propto rac{lpha^3}{m_\mu^2}$$

Для мюонов $\sigma_{\mathsf{пар}} \sim 1.5 \sigma_{\mathsf{торм}}$ при E > 100 ГэВ.

Потери энергии для мюонов за счет рождения e^+e^- пар и тормозного излучения превосходят ионизационные потери при $E_\mu > 300$ ГэВ (в железе). Для сравнения для электронов это 25 МэВ, меньше примерно в $(m_\mu/m_e)^2$ раз.

Многократное рассеяние

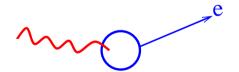
(для любых заряженных частиц)

$$\sqrt{\theta_x^2} pprox rac{14 \text{ M} \ni \text{B}}{p \beta c(\text{M} \ni \text{B})} \sqrt{rac{z}{X_0}}$$

Например: $p\beta c=100$ МэВ, x=1 см АІ, $\sqrt{\theta^2}\sim \frac{14}{100}\sqrt{\frac{1}{9}}\sim 5\cdot 10^{-2}$

Взаимодействие фотонов

- 1. Упругое (релеевское) рассеяние
- 2. Фотоэффект
- 3. Комптоновское рассеяние
- 4. Рождение $e^{+}e^{-}$ пар

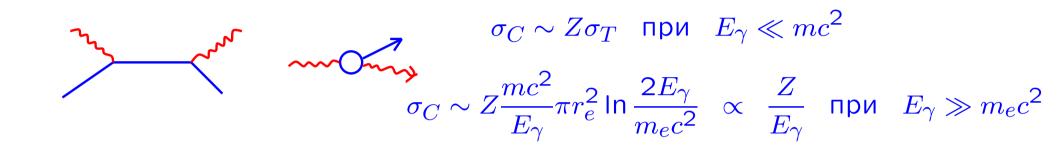

Релеевское-Томсоновское когерентное рассеяние

- упругое рассеяние (без ионизации и возбуждения).

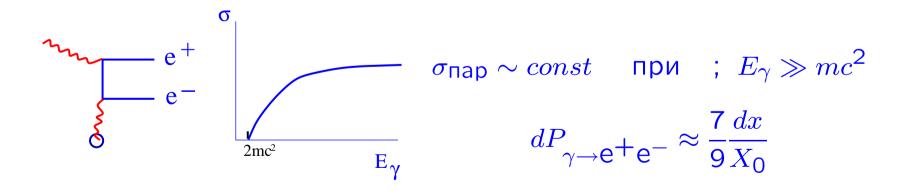
При $\omega < \omega_a \ \sigma \propto 1/\lambda^4$, поэтому небо голубое

При
$$\omega>\omega_a$$
 и $\lambda>r_a$ $\sigma\approx Z^2\sigma_T$, где $\sigma_T=(8\pi/3)r_e^2$

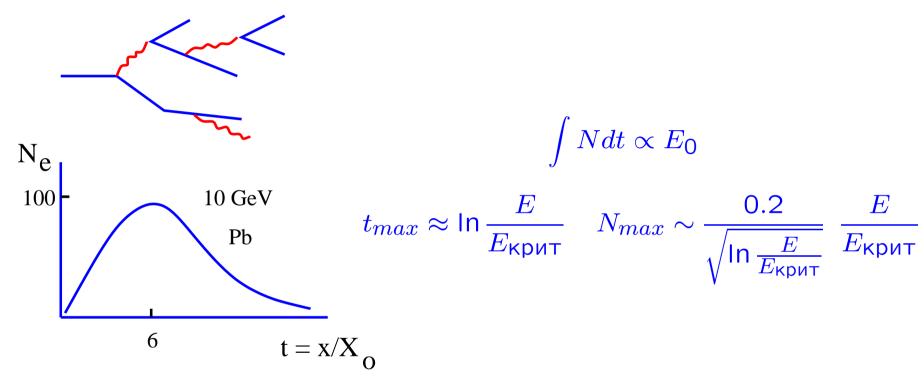
При $\omega > \omega_a$ и $\lambda < r_a$ быстро падает с энергией.



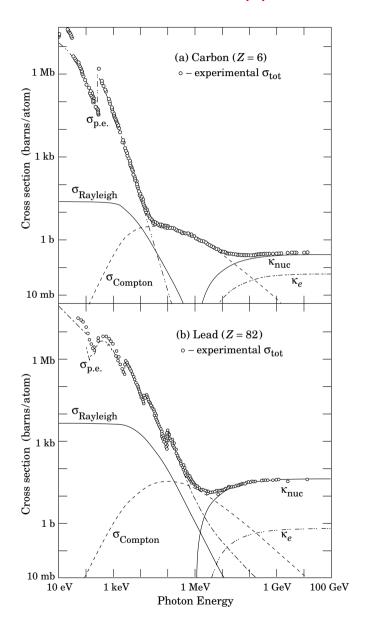
Фотоэффект


Фотон поглощается, электон выбивается. Ф.э. идет в основном на самых связанных электронах (К-оболочке, если хватает энергии).

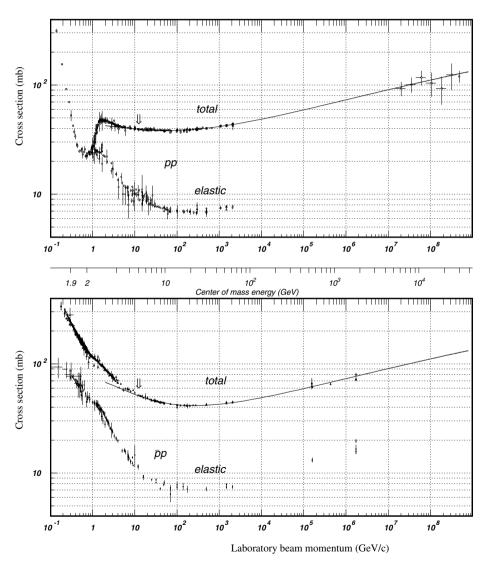
$$(\sigma_{\oplus})_K = \frac{32\pi\sqrt{2}}{3}\alpha^4 r_e^2 Z^5 \left(\frac{mc^2}{E_{\gamma}}\right)^{7/2} \propto \frac{Z^5}{E_{\gamma}^{3.5}}$$


Комптоновское рассеяние

Рождение пар



Электрон-фотонный ливень



 $20\ X_0$ достаточно, чтобы поглотить ливень — так измеряется энергия фотонов высоких энергий, регистрируется в виде ионизации или сцинтиляционного света пропорционального ионизации.

Полные сечение взаимодействия фотона

Ядерные взаимодействия

Сильное взаимодействие для адронов (состоят из кварков): $p, n, \pi, K, ...$

 $\sigma \ (p+Z \to \text{адроны}) \sim 40 \cdot 10^{-27} \ A^{0.7} \ \text{cm}^2$

$$\lambda \sim rac{1}{n\sigma}$$
 λ Al ~ 30 CM Fe ~ 10 Cm Pb ~ 10 cm

При высокой энергии развивается адронный ливень $L_{tot}\sim$ 20 λ . Для железа $L_{tot}\sim$ 2 м.

Черенковское излучение

При движении заряженной частицы в среде со скоростью выше скорости света (в среде на данной частоте) испускаются фотоны под углом $\cos \theta_c = \frac{c}{nv}$

$$\frac{dN}{dx} = 2\pi\alpha \int_{n\beta>1} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \frac{d\lambda}{\lambda^2} = 2\pi\alpha \sin^2\theta_c \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$

Для $\lambda = 350 - 500$ нм (Sb-Cs фотокатод)

$$\frac{dN}{dx}=390\sin^2\theta_c\,\frac{\text{фотонов}}{\text{см}}$$
 , или $\frac{dN}{dx}=370\sin^2\theta_c\left[\frac{\Delta\omega}{\Im\mathsf{B}}\right]$

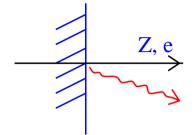
Для воды n=1.33, $\theta_c=41^\circ$, dN/dx=200 фотонов/см.

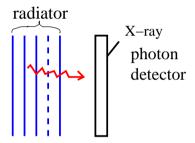
Потери энергии на Чер. излучение $dE/dx \sim 500$ эВ/см (2 МэВ/см за счет ионизационных потерь). Однако Ч.и. очень важно, т.к. используется для определения типа частиц по углу Чер. излучения или по факту его наличия (в пороговых счетчиках) (см.след.лекция)

Сцинтиляции

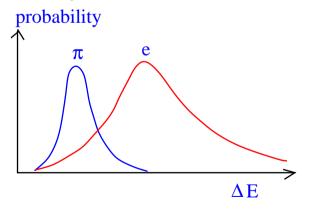
Возбужденные атомы испучкают фотоны. Чтобы они не поглощались средой на тех же уровнях применяют сместители спектра (малые добавки). Они забирабт возбуждения и затем высвечивают.

Пластические сцинтиляторы (органические) дают $\sim 10^4$ фотонов/1 МэВ ионизационных потерь (черенковское излучение ~ 200), время высвечивания 1-10 нс.




Неорганические сцинтилляторы:

	$N_\gamma/$ МэВ	$ au(extsf{HC})$	$X_0(CM)$
NaJ(TI)	$4\cdot 10^4 \equiv N_0$	250	2.6
CsJ(TI)	$0.4N_0$	1000	1.85
BGO	$0.15N_{0}$	300	1.12
BaF_2	$(0.05_f + 0.2_s)N_0$	0.7,600	2.05


На их основе делают счетчики полного поглощения для регистрации фотонов.

Переходное излучение

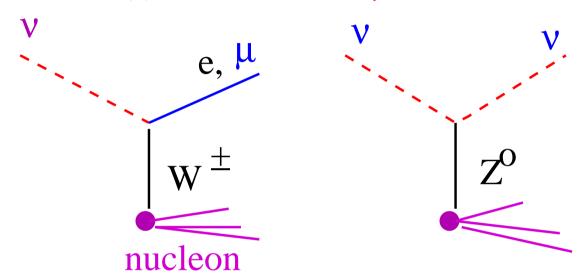
signals in TRD

$$I = \frac{1}{3}\alpha Z^2 \gamma \hbar \omega_p$$

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}$$

 $\hbar\omega_p\sim$ 20 эВ для 'пластмасс.

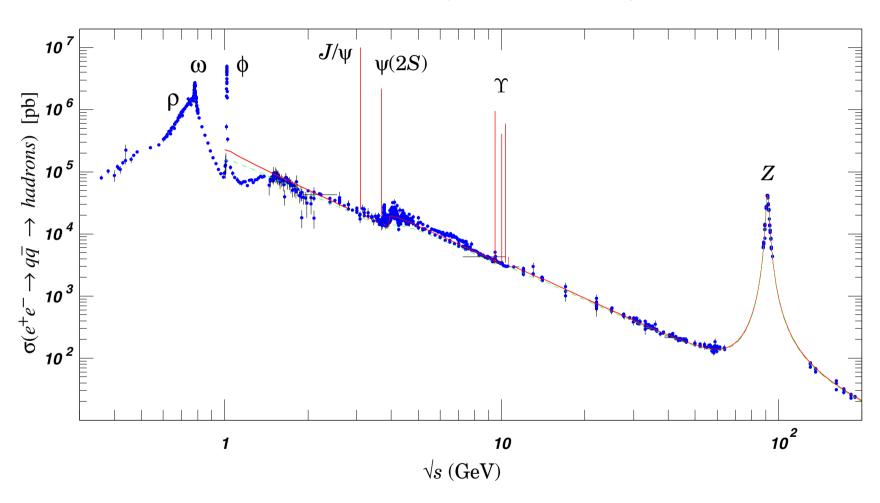
Углы вылета фотонов $heta \sim 1/\gamma$.

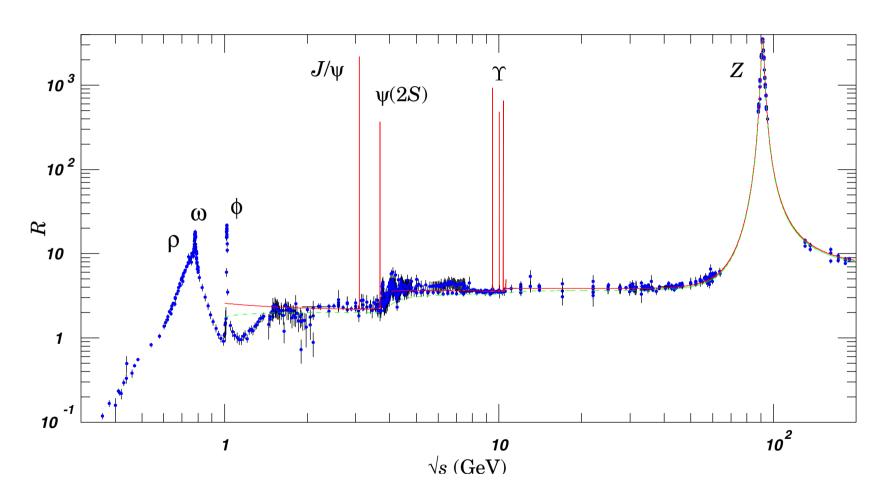

Спектр $0.1\gamma\hbar\omega_p < \hbar\omega < \gamma\hbar\omega_p$.

Для $\gamma = 10^3 \ \hbar\omega \sim 2 - 20 \ \mbox{кэВ,}$ т.е. рентген.

Число фотонов с одной границы $N_{\gamma} \sim \frac{2}{3} \alpha Z^2 \sim 0.005 Z^2$

Используют много слоев в детекторах для идентификации частиц. Фотоны регистрируются проп. камерой наполненной Xe.


Взаимодействие нейтрино


$$\sigma_{\nu N} \sim 0.6 \cdot 10^{-38} \ \mathrm{cm}^2 \ E$$
[ГэВ]

Эта ф-ла справедлива при $E>M_N$. Например: для E=1000 ГэВ вероятность взаимодействия при прохождении через Землю порядка 1%.

Взаимодействие электрона с позитроном

Взаимодействие электрона с позитроном (R)

Дозиметрия

Поглощенная доза

$$1 \text{ рад} = 100 \text{ эрг/г}$$
 $1 \text{ грей} = 1 \text{ Дж/кг} = 100 \text{ рад}$
Старая ед. $1 \text{ ренген} = 0.88 \text{ рад}$

Эквивалентная доза

бэр = Q
$$\cdot$$
 рад Q- коэф. "качества" X, γ 1 e, μ 1-5 n < 10 кэВ 5 n(10 – 100) кэВ 10 n > 100 кэВ 20 n > 20 МэВ 5

Пример:

для мин. иониз. частиц 1 рад соответствует 10^7 част./см 2 .

Доза от точечного источника электронов

$$D(\text{рад}) = \frac{I(1/\text{сек})}{4\pi r^2 \cdot 3 \cdot 10^7}$$

Дозиметрия

Поглощенная доза

1 рад =
$$100 \text{ эрг/г}$$

1 грей = $1 \text{ Дж/кг} = 100 \text{ рад}$
Старая ед. 1 ренген = 0.88 рад
Эквивалентная доза

$$бэр = Q \cdot рад$$

Q- коэф. жачеств	3a
X,γ	1
e, μ	1
Р	1-5
n < 10 кэВ	5
n(10 – 100) кэВ	10
n > 100 кэ B	20
n > 20 МэВ	5

Пример:

для мин. иониз. частиц 1 рад соответствует 10^7 част./см 2 .

Доза от точечного источника электронов

$$D(\text{рад}) = \frac{I(1/\text{сек})}{4\pi r^2 \cdot 3 \cdot 10^7}$$

Эквивалентная доза (СИ)

Зиверт=грэй*Q=0.01 бэр

Доза для фотонов

Фотоны от радиоктивных источников, как и источники электронов, имеют примерно такие же энергии порядка 1 МэВ, но их пробег без взаимодействия существенно больше пробега выбитого электрона. Поэтому, чтобы призвести такой же радиационный эффект их поток должен быть больше. Для 1 МэВ фотонов 1 бэр соответствует 2·10⁹ фотонов на cm^2 .

Дозы

Смерт. доза \sim 300 бэр

Естественная радиация: 0.15 бэр/год;

Из них косм. лучи:

0.03 бэр/год.

Мед.обследования вредны, но новые малодозные аппараты дают дозу эквивалентную всего 3 дням естественной радиации.

на лучших X-ray установках в аэропортах составляет 0.2 мкЗв. Это всего 5% суточной радиации на поверхности Земли.

Если облучение не всего тела, то для оценки последствий используется **Эффективная доза**, учитывающая взвешивающие коэффициенты отдельных органов W_{T}

W_{τ}	_	1
vv _T		J

Гонады	0.2
Костный мозг (красный)	0.12
Толстый кишечник	0.12
Легкие	0.12
Желудок	0.12
Мочевой пузырь	0.05
Грудная железа	0.05
Печень	0.05
Пищевод	0.05
Щитовидная железа	0.05
Кожа	0.01
Клетки костных поверх.	0.01
Остальное	0.05