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We report the final results of a study of the ψ(3770) meson using a data sample collected with the KEDR
detector at the VEPP-4M electron–positron collider. The data analysis takes into account interference
between the resonant and nonresonant D D production, where the latter is related to the nonresonant
part of the energy-dependent form factor F D . The vector dominance approach and several empirical
parameterizations have been tried for the nonresonant F N R

D (s).
Our results for the mass and total width of ψ(3770) are

M = 3779.2+1.8
−1.7

+0.5
−0.7

+0.3
−0.3 MeV,

Γ = 24.9+4.6
−4.0

+0.5
−0.6

+0.2
−0.9 MeV,

where the first, second and third uncertainties are statistical, systematic and model, respectively. For the
electron partial width two possible solutions have been found:

(1) Γee = 154+79
−58

+17
−9

+13
−25 eV,

(2) Γee = 414+72
−80

+24
−26

+90
−10 eV.

Our statistics are insufficient to prefer one solution to another. The Solution (2) mitigates the problem of
non-D D decays but is disfavored by potential models.
It is shown that taking into account the resonance–continuum interference in the near-threshold
region affects resonance parameters, thus the results presented cannot be directly compared with the
corresponding PDG values obtained ignoring this effect.

© 2012 Published by Elsevier B.V.
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1. Introduction

The preceding Letter of this volume is devoted to the measure-
ment of the ψ(2S) meson parameters in the KEDR experiment
performed during energy scans from 3.67 to 3.92 GeV at the VEPP-
4M e+e− collider. In this Letter we describe the application of the
developed tools to the measurement of ψ(3770) parameters omit-
ting details common for ψ(2S) and ψ(3770).

Since the discovery of the ψ(3770), seven experiments con-
tributed to the determination of its parameters, nevertheless the
situation with the mass, total width and electron partial width is
still not clear.

The incomplete compilation of results reported on ψ(3770)

mass is presented in Table 1. It does not include the results of
Refs. [12,13] with the analysis of the e+e− → D D , data of BES [14]
and the e+e− → D Dγ data of Belle [15] in which the ψ(3770)

electron width has been fixed in the fits causing a mass bias. In ad-
dition, the bin size in Belle data around ψ(3770) seems too large
for a simple center-of-bin fitting. These works encouraged us to
employ the vector dominance model in the analysis [11].

The values presented form three partially overlapping clusters.
The first one with 〈M〉 = 3772.5 ± 0.4 MeV comes from the anal-
yses in which interference between resonant and nonresonant D D
production has been ignored [1–3,5–7]. In addition, the analyses
assumed the simplest shape of nonresonant D D-cross section sim-
ilar to that for point-like pseudoscalars in QED. The statistical un-
certainty in this case is small (in [7] the influence of ψ(4040) and
higher ψ ’s included in the analysis increases the ψ(3770) mass
uncertainty). The second cluster of B → D D K analyses [4,8,9] has
〈M〉 = 3775.6 ± 2.3 MeV (the result of [4] is not included be-
cause of its uncertain status). The third, highest mass, cluster is
formed by the analyses accounting for interference [10,11] and
gives 〈M〉 = 3777.3 ± 1.3 MeV.

As was mentioned in Section 5.2 of the previous Letter, tak-
ing into account the resonance–continuum interference is essential
for a determination of the ψ(3770) parameters. A close D D pro-
duction threshold significantly increases the importance of that. A
consideration of the interference effects is one of the primary goals
of this experiment.1

If interference is ignored in a fit of the measured D D or mul-
tihadron cross section, a bias appears in the growing continuum
contribution that causes a bias in the resonance amplitude and a
shift of the mass value. The signs of these effects depend on the
relative position of the interference peak and dip. The D D cross
section at the threshold is fixed at zero, therefore the weights of
the more distant data points in a fit are larger than those of the
less distant ones. Evidence for a dip after the D D cross section
maximum is visible in all published data with large enough statis-
tics (see, for example, Fig. 1 of Ref. [6]), therefore, the artificial
mass shift should be negative (undercounted events move the res-
onance peak to the left). That is exactly what we observe analyzing
the published mass results.

If the result on mass of [4] is ignored, the ψ(3770) mass value
obtained in B decays does not contradict neither to 3772.5 nor
3777.3 MeV. The interference of the resonant and nonresonant D D
yields also takes place in this case but the relation between them
can differ from that in e+e− collisions, besides, the interference
effect can be partially compensated by subtraction of the combi-

* Corresponding authors.
E-mail addresses: shamov@inp.nsk.su (A.G. Shamov), todyshev@inp.nsk.su

(K.Yu. Todyshev).
1 The result of [5] was obtained solely to check consistency with the previous

measurements.

Table 1
Incomplete compilation of results on ψ(3770) mass.

Analysis Mψ(3770) [MeV] Comments

MARK-I [1] 3774.1 ± 3 e+e− → hadrons(a)

DELCO [2] 3772.1 ± 2 e+e− → hadrons(a)

MARK-II [3] 3766.1 ± 2 e+e− → hadrons(a)

Belle [4] 3778.4 ± 3.0 ± 1.3 B → D0 D0 K +(b)

KEDR [5] 3773.5 ± 0.9 ± 0.6 e+e− → hadrons(c)

BES-II [6] 3772.4 ± 0.4 ± 0.3 e+e− → hadrons(a)

BES-II [7] 3772.0 ± 1.9 e+e− → hadrons
Belle [8] 3776.0 ± 5.0 ± 4.0 B → D0 D0 K +
BaBar [9] 3775.5 ± 2.4 ± 0.5 B → D D K
BaBar [10] 3778.8 ± 1.9 ± 0.9 e+e− → D Dγ (d)

KEDR [11] 3778.0 ± 1.6 ± 0.7 e+e− → hadrons(c,d)

(a) Omitted in the latest PDG edition.
(b) The result on B(B → D0 D0 K +) is superseded by [8].
(c) Preliminary results reported at various conferences.
(d) Interference between resonant and nonresonant D D production is taken into
account.

natorial background. Thus, the intermediate mass value does not
seem surprising.

Below we briefly describe the theoretical basis of the analysis
performed, enter some details concerning the analysis procedure
and not covered in the preceding Letter, present the results on the
ψ(3770) parameters and discuss their systematic uncertainties and
model dependence.

2. Multihadron cross section in the vicinity of ψ(3770)

A few approaches can be employed to determine the reso-
nance parameters using a multihadron cross section data. In the
Ref. [6] the fit of the R ratio was performed, in the Ref. [16] the
efficiency-corrected cross section was analyzed. There are many
different sources of multihadron events such as the ψ(2S) and
ψ(3770) production, the light quark production etc., thus the vari-
ation of the net detection efficiency in the whole experiment range
can exceed 20% [17]. The calculation of the net efficiency implies
knowledge of the resonance parameters and accounting for the in-
terference effects, therefore an iterative analysis is required. In this
work we fit the observed multihadron cross section not corrected
for the detection efficiency which allows iterations to be avoided.

2.1. Observed cross section and D-meson form factor

In the energy range from slightly below the ψ(2S) peak to
slightly above the D Dπ threshold the variation of the light quark
contribution to R (Ruds) is small, so that the multihadron cross
section observed in the experiment can be written as

σ obs
mh = εψ(2S)σ

RC
ψ(2S) + ε J/ψσ RC

J/ψ + εττ σ
RC
ττ + σ

emp
uds

+ εD+ D−σ RC
D+ D− + εD0 D0σ

RC
D0 D0

+ εnD DBnD Dσ RC
ψ(3770) + σ

emp
D Dπ

(1)

where σ RC ’s are theoretical cross sections, ε’s are corresponding
detection efficiencies, and σ emp ’s are terms treated empirically as
described below. The RC superscript means that the cross sec-
tion has been corrected for initial state radiation (ISR) effects, nD D
stands for the direct ψ(3770) decay to light hadrons, the other (su-
per/sub)scripts seem self-explanatory, BnD D is a branching fraction.
All detection efficiencies explicitly entering Eq. (1) can be kept en-
ergy independent with sufficient accuracy for the event selection
criteria employed (see Section 3.1).

The first four terms have no peculiarities in the whole energy
range of the experiment, while the last four are responsible for the
excess of the cross section in the ψ(3770) region.
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The fourth term of Eq. (1) corresponding to the light quark
contribution can be scaled as 1/s1−δ where a relatively small pa-
rameter δ is due to the energy dependence of the detection effi-
ciency and radiative corrections. Possible variation of Ruds can also
contribute to δ. This term can be easily removed from the con-
sideration in the fit of the cross section provided that the δ value
is known. The D Dπ cross section can be treated as a small cor-
rection. We took it into account using the approximately known
shape and an additional fit parameter.

Calculations for σ RC
ψ(2S) and σ RC

ττ are described in the preceding
Letter, a small contribution of the J/ψ tail was calculated similarly
to the ψ(2S) one, for the D D production cross section (here and
below D stands for D+ or D0) one has

σ RC
D D

(W ) =
∫

zD D

(
W ′√1 − x

)
σD D

(
W ′√1 − x

)
×F(

x, W ′2)G
(
W , W ′)dW ′ dx, (2)

where F(x, s) is the probability to lose a fraction of s in the initial
state radiation [18], G(W , W ′) describes a distribution of the total
collision energy, which can be assumed to be Gaussian with an
energy spread σW .

For the charged mode (D+D−) the factor zD+ D− describing the
Coulomb interaction between the mesons produced [19] is taken
according to Sommerfeld–Sakharov [20–22]:

zD+ D− = πα/βD+

1 − exp (−πα/βD+)
× θ(W − 2mD+). (3)

For the neutral mode (D0 D0) there is no such interaction, thus

zD0 D0 = 1 × θ(W − 2mD0), (4)

the step functions θ(W − 2mD) are shown explicitly to simplify
some expressions below.

The cross section σD D can be expressed via the form factor F D

and D-meson velocity in the c.m. system βD :

σD D(W ) = πα2

3W 2
β3

D

∣∣F D(W )
∣∣2

, βD =
√

1 − 4m2
D/W 2. (5)

To determine the parameters of resonances above the D D
threshold, their amplitudes should be separated in F D :

F D(W ) =
∑

i

F Ri
D (W )eiφi + F N R

D (W ), (6)

where φi is the phase of the i-th resonance Ri relative to F N R
D .

For the resonance with the partial widths Γee and ΓD D and the
total width Γ (W ), one has a Breit–Wigner amplitude

F R
D(W ) =

6
√

(Γee/α2)(ΓD D(W )/β3
D)W

M2 − W 2 − iMΓ (W )
(7)

(the vacuum polarization factor is included in Γee).
Considering Γ (M) as a nominal resonance width and introduc-

ing the sum of the branching fractions to all non-D D modes BnD D ,
one obtains the energy-dependent D D partial width

ΓD D(W ) = (M/W )zD D(W )dD D(W ) · Γ (M) · (1 − BnD D)

zD0 D0(M)dD0 D0(M) + zD+ D−(M)dD+ D−(M)
(8)

in line with the PDG prescriptions (Ref. [23, p. 808]). Here dD+ D−
and dD0 D0 are the Blatt–Weisskopf damping factors for a vector
resonance [24]:

dD D = ρ3
D D

ρ2
D D

+ 1
, ρD = qD R0, (9)

where R0 represents the meson radius and qD is the c.m. momen-
tum of the meson qD = βD W /2. The partial width dependence
according to Eq. (8) corresponds to the approach of Ref. [19]. Its
simplified form was used in the experiments [1–3]. The approach
is somewhat different from that employed in Refs. [6,7] by BES
which does not lead to noticeable changes of the ψ(3770) param-
eters.

The D Dπ cross section entering (1) as a small correction can
be calculated with sufficient accuracy using

σD Dπ (W ) = πα2

3W 2
β3

D Dπ
|F D Dπ |2,

βD Dπ =
√(

1 − (mD∗ + mD)2/W 2
)(

1 − (mD∗ − mD)2/W 2
)
. (10)

The quantity F D Dπ is treated as a fit parameter.

2.2. Nonresonant D-meson form factor

The nonresonant part of the form factor can be written as

F N R
D (W ) = 1

|1 − Π0(W )| f D(W ) (11)

with f D(W ) = 1 for point-like particles. Here Π0 is the vacuum
polarization operator except the contributions of all resonances
which are written separately in (6). We remind that the full po-
larization operator is calculated using the total cross section of
e+e− → hadrons that already includes all resonances, therefore use
of the full operator Π instead of Π0 in the nonresonant amplitude
leads to double counting of the resonances and thus incorrect val-
ues of the leptonic widths (see also the discussion in Section 5.3
of the preceding Letter).

There are no precise theoretical predictions for F N R
D (W ). The

model-independent result can be obtained using the expansions of
Re F N R

D (W ) and Im F N R
D (W ) at the point W = M with the coeffi-

cients free in the fit. Our statistics are not sufficient for that, thus
we have to rely on some model or use a pure empirical approach
as in Ref. [10] by BaBar also taking into account the resonance–
continuum interference.

The most certain prediction of the form factor can be obtained
with an application of the Vector Dominance Model (VDM) to
charm production. Standard VDM assumes that the inclusive cross
section e+e− → hadrons at low energy is saturated by the interfer-
ing contributions of the limited number of vector mesons. A simi-
lar assumption can be accepted for the inclusive e+e− → cc cross
section and its exclusive modes such as e+e− → D D . The VDM-like
analysis of the R ratio in the energy range of W = 3.7–5 GeV has
been performed by BES in Ref. [7], where the light quark contribu-
tion Ruds was calculated using pQCD. The work cited accounts for
ψ(3770), ψ(4040), ψ(4160) and ψ(4415) resonances but does not
account for a possible contribution of ψ(2S) decays to D D above
the threshold. Studies of this contribution Refs. [12,13] include a
theoretical consideration and some analysis of the D D cross sec-
tion measured by BES as well as by BELLE. In this work we employ
VDM in a simplified form

F N R
D (W ) = F ψ(2S)

D (W ) + F0, (12)

where F0 is a real constant representing the contributions of
the ψ(4040) and higher ψ ’s. The ψ(2S) contribution to the
D D form factor F ψ(2S)

D was calculated using Eq. (7) with the
D0 D0 and D+D− partial widths defined similarly to Eq. (8)
with a specific value of the effective radius R0. The value of
Γ

ψ(2S)

D D
(Mref ) = Γ

ψ(2S)

D+ D− (Mref ) + Γ
ψ(2S)

D0 D0 (Mref ) at some reference
point Mref , as well as the constant F0, should be obtained from
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the data fit (Mref = 3778 MeV was used). The partial width ratio

Γ
ψ(2S)

D0 D0 /Γ
ψ(2S)

D+ D− is presumably close to that of ψ(3770).
To evaluate the model dependence of the ψ(3770) parameters

we tried a few nonresonant form factor parameterizations, which
do not assume vector dominance. The most popular empirical pa-
rameterization is probably exponential:

f D = exp
(−q2

D/a2),
where qD is the c.m. momentum [25]. It is well motivated far
above the threshold but has few parameters to describe the low
energy region. Instead of it we used

f D = − gq

(1 + aqq2
D + bqq4

D)n
(n = 0.5,1). (13)

The minus sign is chosen to match the ψ(2S) dominance expecta-
tions. In the case n = 0.5, bq = 0, the nonresonant cross section
acquires the Blatt–Weisskopf factor (9) with R0 = aq . The case
n = 1 corresponds to a more rapid form factor fall. Use of two
parameters aq and bq allows us to take into account in the limited
energy range the increase of the D D cross section described by
the G(3900) structure in Ref. [10]. Alternatively, the dependence
on W − mD

f D = − gW

1 + aW (W − 2mD) + bW (W − 2mD)2
(14)

and combined dependences

f D = − gqW

(1 + aqW (W − 2mD) + bqW q2
D)n

(15)

were considered.
To check validity of the ψ(2S) domination hypothesis in

Eq. (12) the following parameterizations were used:

f D = gm

am − W

(
1 + ibmβn

D

am − W

)
(n = 0,1,3), (16)

where βD is the D-meson velocity. They are expansions of the
Breit–Wigner amplitude with the mass am treated as a free pa-
rameter, the values of n correspond to different assumptions on
Γ (W ) dependence. In case of ψ(2S) dominance the fitted value of
am would be close to Mψ(2S) .

3. Data analysis

3.1. Detection efficiency determination

To perform a fit of the observed multihadron cross section with
Eq. (1), it is necessary to know six detection efficiencies explicitly
entering the equation and the detection efficiency εuds implicitly
contained in the term σ

emp
uds related to the continuum light quark

production. They were determined from Monte Carlo simulation.
The efficiency εnD D enters Eq. (1) in the product with the non-D D
branching fraction BnD D , which is rather uncertain. That allows
one to assume εnD D ≈ εψ(2S) .

The event selection criteria, which are different for 2004 and
2006 scans, and the procedure of the detection efficiency determi-
nation for the ψ(2S) decay simulation are described in detail in
the preceding Letter. The tuned version of the BES generator [26]
was employed to the obtained ψ(2S) detection efficiency in the
vicinity of the peak. The same version of the generator with pa-
rameters optimal for ψ(2S) simulation was used to simulate the
ψ(2S) and J/ψ tails and the continuum uds production. To sim-
ulate e+e− → D D events, D D pairs were first generated with the
proper angular distribution. Decays of D mesons were simulated

Table 2
Detection efficiency for the processes of interest and its variation in the experiment
energy range �W ≈ 200 MeV.

Process ε2004 ε2006 �ε/ε, %

D+ D− 0.75 ± 0.02 0.84 ± 0.02 +1.0 ± 0.3
D0 D0 0.74 ± 0.02 0.81 ± 0.02 +1.0 ± 0.3
ψ(2S) 0.63 ± 0.01 0.72 ± 0.01 −0.1 ± 0.1
J/ψ 0.50 ± 0.02 0.60 ± 0.02 −0.2 ± 0.1
uds 0.55 ± 0.02 0.69 ± 0.02 +2.1 ± 0.5

using the routine LU2ENT of the JETSET 7.4 package [27]. The de-
cay tables of JETSET were updated according to those of the PDG
review [23].

The detection efficiencies for the processes of interest and their
energy variations are presented in Table 2. The systematic un-
certainties of the efficiencies ε J/ψ and εuds were estimated by
variation of JETSET parameters preserving the mean value of the
charged multiplicity. The systematic uncertainties on εD+ D− and
εD0 D0 were found modifying the decay branching fractions of D-
mesons within uncertainties quoted in the PDG tables.

3.2. Fitting of data

The observed multihadron cross section was fitted as a function
of W with the expression (1) using some assumptions about the
behavior of the nonresonant form factor F N R

D . The details on the
likelihood calculation can be found in the preceding Letter. The
following additional constraint was applied∣∣∣∣ F N R

D+ (Wref )

F N R
D0 (Wref )

∣∣∣∣
2

= σD+ D−(Wref )

σD0 D0(Wref )
= r+−

00 , (17)

with the reference mass Wref = 3773 MeV not far from the ob-
served cross section maximum. The value r00+− = 0.776+0.028

−0.025 [28]
was used. The world average values were also used for the J/ψ
mass, total and electronic width. The total width of ψ(2S) was
fixed at the value of 296 ± 9 keV obtained in the preceding Let-
ter. The meson radii of Eq. (9) were fixed at 1 fm and 0.75 fm for
ψ(3770) and ψ(2S), respectively (Refs. [29–31]). Since the exper-
imental results on the non-D D fraction of ψ(3770) decays BnD D
are controversial and theory expects it to be small, we performed
the fits with BnD D = 0 and 0.16 and assigned variation of the pa-
rameters to the systematic uncertainties.

The light quark contribution was parameterized as

σ
emp
uds = εuds

(
1 + δRC

uds

)
Ruds

( M2
ψ(2S)

s

)1−δ

σ B
μμ(Mψ(2S)), (18)

where δRC
uds is a radiative correction of about 0.12, Ruds is a light

quark contribution to the R ratio averaged over the experiment en-
ergy range and σ B

μμ in a Born level dimuon cross section. The val-

ues of δRC
uds and εuds are constants corresponding to W = Mψ(2S) .

The parameter δ was fixed at 0.187 ± 0.046 with the uncertainties
dominated by that of the detection efficiency variation presented
in Table 2. The detailed discussion can be found below in Sec-
tion 4.4.

A simultaneous fit of three scans has been performed. Each
scan has its own free parameters (the energy spread σW and Ruds)
and has other free parameters common for all three scans. Among
them are the mass Mψ(2S) , the product of the electron width
and the branching fraction of its decay to hadrons Γee × Bhadr for
ψ(2S); the mass M , the total width Γ , the electron width Γee and
the interference phase φ for ψ(3770). The D Dπ contribution was
tuned using the free parameter F D Dπ . The nonresonant form fac-

tor has been controlled by either the free parameters Γ
ψ(2S)

D D
(Mref )
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Fig. 1. The observed multihadron cross section as a function of the c.m. energy for
the three scans. The curves are the results of the vector dominance fit. The detection
efficiencies and the energy spreads for the scans differ.

(the ψ(2S) partial width above the D D threshold) and F0 (con-
stant term of the form factor) or by three parameters g , a, b
defined in Eqs. (13), (14), (15) and (16). The last but not least free
parameter was the interference phase φ. The total number of free
parameters was either 15 or 16.

The parameters controlling the nonresonant form factor behav-
ior have strongly correlated asymmetric statistical errors. Instead
of them we present below the value of the nonresonant D D cross
section at the resonance peak σ N R

D D
(M) and its error obtained in

fits with modified sets of free parameters (e.g., the (F0, Γ
ψ(2S)

D D
)

pair was replaced with the (F0, σ N R
D D

) one).
The observed multihadron cross section for the scans is pre-

sented in Fig. 1. The curve represents the vector dominance fit.
The resulting values of ψ(2S) parameters agree very well with
those obtained fitting the narrow energy range around ψ(2S) (pre-
vious Letter). The difference in the mass values is 2 keV, the
variation of the Γee × Bh product is about 0.3%. As a consistency
check, we estimate Ruds for the three scans. The fitted values are
2.33 ± 0.10, 2.25 ± 0.09 and 2.31 ± 0.06. The weighted average
Ruds = 2.300 ± 0.046 ± 0.108 (χ2/NDoF = 0.49/2) agrees well with
a similar value 2.262 ± 0.122 published by BES in Ref. [32] and
does not contradict to the result of the BES measurement [33]:
R = 2.14 ± 0.01 ± 0.07 at W = 3.65 GeV.

The excess of the multihadron cross section in the ψ(3770) re-
gion is shown in Fig. 2. To calculate the excess, the terms 1–4 of
Eq. (1) obtained by the vector dominance fit were subtracted from
the measured cross section at each point, the residuals were cor-
rected for the detection efficiency calculated by weighting the fit
terms 5–8. These terms of the fits are presented with the curves.
The ignored-interference fit and the fits with the anomalous line
shapes from Ref. [16] are presented for comparison.

3.3. On ambiguity of resonance parameters

It is known that for two interfering resonances the ambigu-
ity can appear in the resonance amplitudes and the interference
phase. A detailed study of that issue can be found in Ref. [34].
In the case of two resonances with constant widths complete de-
generation occurs: one obtains the identical cross sections for two
combinations of the amplitudes and phase at the same values of
the mass and width.

Fig. 2. Excess of the multihadron cross section in the ψ(3770) region. The curves
show relevant parts of the fits. The error bars correspond to the uncertainty of the
measured multihadron cross section. All data are corrected for the detection effi-
ciency which is different in the three scans. See the detailed explanation in the
text.

Fig. 3. Excess of the multihadron cross section in the ψ(3770) region. Solid and
short-dashed curves correspond to two VDM solutions. Resonant and nonresonant
parts are presented separately.

For the energy-dependent widths there is no complete degen-
eration, however, the likelihood function has local maxima on the
amplitude-phase plane at slightly different mass and width values.
A similar situation occurs when a resonance interferes with a vary-
ing continuum.

In our case the typical difference in equivalent χ2 values of the
two local minima is very small, −2� ln (L) 	 0.02, thus a certain
solution cannot be chosen. The variation of mass and width for
possible solutions is small and neglected below.

4. Results of analysis

4.1. ψ(3770) parameters assuming vector dominance

In Table 3 we compare the ψ(3770) parameters obtained un-
der the assumption of ψ(2S) dominance in the nonresonant form
factor for two possible solutions with those extracted from the
ignored-interference fit and the current world average values. The
small corrections to residual background given below in Table 5 of
Section 4.3 are not applied to results of the fit. The continuum D D
cross section σ N R

D D
is given without the radiative correction factor
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of about 0.75. The values of the mass and the electron width for
the ignored-interference fit are in good agreement with the world
average ones, while the value of the total width deviates from the
average one by 1.5 standard deviation. That is probably due to the
statistical fluctuation that occurred at the three points of the first
scan (see Fig. 2).

Taking into account the resonance–continuum interference in
D D production improves the chi-square of the fits from 91.1/73
to 74.8/71. The phase of the ψ(3770) amplitude relative to the
nonresonant form factor is about 171 and 240 degrees for the first
and second solution, respectively. The nonresonant form factor has
a negative real part and a small imaginary one. At the ψ(3770)

peak ψ(2S) contributes approximately 70% to the total value of the
nonresonant form factor. If the resonance–continuum interference
is ignored, the total width is not substantially affected, however,
the mass shift of about −6.0 MeV appears as well as dramatical
change of the value and error of the electron width. The non-
resonant D D cross section in this case is underestimated as was
discussed in the introduction.

A large splitting of the Γee values is expected in the near-
threshold region. Let us illustrate that with an example of the area
method of the Γee determination discussed soon after the J/ψ dis-
covery [35]. The electron width is proportional to the area under
the resonance curve

Γee = k
M2

6π2

∫
σres(W )dW (19)

(the coefficient k is equal to unity for the energy-independent to-
tal width), therefore the following expression can be obtained in
absence of radiative corrections for the case when the continuum
cross section is small compared to the resonant one:

Γ i.i.
ee ≈ Γee

(
1 + α

3

√
RC(M)

Bee
sinφ

)
+ 2α

√
Bee

3π
M cos φ

× k

∫
(W − M)

√
Γ (M)Γ (W )

√
RC(W )

(W − M)2 + Γ (W )2/4

dW

W
. (20)

Here α is the fine structure constant, RC is the continuum con-
tribution to R , Bee — the e+e− branching fraction and φ is the
interference phase. The continuum cross section ∝ (

√
RC )2 is ne-

glected.
The left part of (20) corresponds to the area under the mea-

sured curve (Γee is obtained ignoring the interference), the right
part has three terms corresponding to the area under the reso-
nance curve itself (the true Γee), the curve due to the imaginary
part of the resonance amplitude (it is also proportional to Γee) and
the area of the interference wave due to the real part of the am-
plitude.

Far enough from the threshold, RC and Γ (W ) are almost con-
stant and the integral is suppressed proportionally to Γ/M . How-
ever, for a varying RC and an asymmetric Γ (W ) near the thresh-
old, it grows up to 0.02–0.15

√
RC(M) depending on the assump-

tions about the energy dependence of Γ and RC. The closeness to
the threshold increases the influence of the interference effects by
an order of magnitude. The coefficient preceding cos φ in Eq. (20)
is about 18 keV in the ψ(3770) case, the fits give RC(M) 	 0.3
with a 40–50% statistical uncertainty. Together these circumstances
make the area method inapplicable to ψ(3770). A fit of the cross
section is obviously not so sensitive to taking interference into ac-
count, nevertheless a splitting of about 260 eV in Table 3 does not
seem surprising.

The resonant and continuum cross sections for the two VDM
solutions are presented in Fig. 3. The choice of the true solution
is essential for determination of the non-D D branching fraction of

ψ(3770). At the c.m. energy of 3773 MeV the resonance cross
section of 3.8+1.9

−1.4 nb for the first solution and 9.9+1.7
−1.9 nb for

the second one should be compared with the non-D D cross sec-
tion, which is 1.08 ± 0.40 ± 0.15 nb according to BES [36] and
−0.01 ± 0.08+0.41

−0.30 according to CLEO [37]. The branching fraction
of about 28% for the first solution seems unreasonable, however,
that cannot be considered as a strong argument in favor of the
second solution until improvement in the non-D D cross section
accuracy.

4.2. Model dependence of results

To evaluate the model dependence of the ψ(3770) parameters
and to check the validity of the vector dominance approach, the
fits were performed with the alternative assumptions about the
nonresonant form factor f D(W ) described in Section 2.2. The re-
sults of the fits are presented in Table 4. A few other assumptions
were also tried.

The amplitude-phase ambiguity was found in all cases consid-
ered. For each fit we assigned the number 1 to the solution with
a smaller phase value, while the alternative solution got the num-
ber 2. The electron width for the first solution was always smaller
than that of the second one and the values for two clusters did not
overlap.

The results obtained assuming q2 dependence of the nonres-
onant form factor as in Eq. (13) almost coincide with those for
W − mD and mixed dependence in Eqs. (14) and (15) because of
the relatively narrow energy range of the experiment.

The mass parameter am of the parameterizations of Eq. (16)
n = 0,1,3 lies between the ψ(2S) mass and the D D threshold
confirming the ψ(2S) dominance. Accepting that the ψ(3770) pa-
rameters corresponding to the vector dominance model are the
most reliable, we derive the following estimates for the model de-
pendence: δM = +0.3

−0.3 MeV, δΓ = +0.2
−0.9 MeV for both solutions and

δΓee = +13
−25(

+90
−10) eV, δσ N R

D D
= +0.4

−0.2(
+0.8
−0.2) nb for Solutions 1 (2), re-

spectively. The maximum deviation of parameters from the VDM
results was taken. The definition of the phase φ with Eq. (6) allows
its model-to-model variation, however, the difference with VDM
exceeds the statistical uncertainty only in the cases (16) n = 0,3
due to a relatively large imaginary part of the nonresonant form
factor fitted in these cases.

We also fitted our data with the anomalous line shapes con-
sidered in the Ref. [16] by BES where a sum of two noninterfer-
ing Breit–Wigner cross sections and a sum of two destructively
interfering amplitudes were referred to as Solution 1 and Solu-
tion 2, respectively. The parameters of the amplitudes were fixed
according to Ref. [16], the two free parameters were introduced
to correct the general normalization and the shift of the energy
scale. The ψ(3770) scale correction averaged for two shapes is
1.042±0.052 at the energy shift of 0.92±0.51 MeV which demon-
strates rather good consistency of KEDR and BES data in general.
The chi-square probabilities P (χ2) are 25.4 and 30.3% for the So-
lutions 1 and 2, respectively, compared to 35.7% for the vector
dominance fit. Both shapes provide a better description of the
data than the single Breit–Wigner amplitude not interfering with
the nonresonant one (“i.i.” case in Table 3) due to increase of the
resonant yield below 3765 MeV. In addition, the destructive inter-
ference in Solution 2 reduces the resonant yield above 3790 MeV
but that does not improve significantly the general fit quality be-
cause of the growth of the peculiarity in the 3765–3780 MeV
energy region absent in our case. Accounting for the resonance–
continuum interference with a Breit–Wigner resonance amplitude
provides the best fit of our data although with our statistics we
cannot exclude the shape anomaly reported in Ref. [16]. It is worth
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Table 3
ψ(3770) fit results for the vector dominance compared to the ignored-interference case.

Solution M , MeV Γ , MeV Γee , eV φ, degrees Γ
ψ(2S)

D D
, MeV F0 σ N R

D D
, nb P (χ2), %

1 3779.3+1.8
−1.7 25.3+4.4

−3.9 160+78
−58 170.7 ± 16.7 12.9+18.5

−11.8 −4.8+3.0
−3.6 1.83 ± 0.96 35.7

2 3779.3+1.8
−1.6 25.3+4.6

−4.0 420+72
−80 239.6 ± 8.6 11.5+16.5

−10.5 −4.9+3.3
−3.7 1.71 ± 0.86 35.7

i.i. 3773.3 ± 0.5 23.3+2.5
−2.2 249+25

−22 – – – 0.07+0.09
−0.07 7.5

PDG [23] 3772.92 ± 0.35 27.3 ± 1.0 265 ± 18 – – – – –

Table 4
ψ(3770) fits results for alternative assumptions on the nonresonant form factor f D .

Model Mass, total width and P (χ2) Solution 1 (smaller φ) Solution 2 (larger φ)

Equation M , MeV Γ , MeV P (χ2), % φ, degrees Γee , eV σ N R
D D

, nb φ, degrees Γee , eV σ N R
D D

, nb

(13) n = 1 3779.1+2.0
−1.6 24.4+5.0

−3.6 32.7 167.6 ± 16.0 146+66
−48 1.82 ± 0.76 243.1 ± 9.5 417+75

−65 1.76 ± 0.73

(13) n = 0.5 3779.0+1.7
−1.6 25.5+3.0

−3.5 33.1 172.2 ± 17.3 172+241
−66 1.59 ± 0.86 241.0 ± 15.6 418+76

−65 1.55 ± 0.66

(14) 3779.0+2.1
−1.9 24.4+5.1

−3.7 32.7 167.5 ± 21.3 145+83
−49 2.09 ± 0.87 243.1 ± 9.5 418+76

−74 2.02 ± 0.86

(15) n = 1 3779.0+2.0
−1.7 24.4+5.1

−3.7 32.7 167.4 ± 20.4 145+68
−49 2.14 ± 0.88 243.0 ± 9.6 422+75

−74 2.07 ± 0.86

(15) n = 0.5 3779.0+1.7
−1.6 25.2+4.2

−2.8 33.1 172.2 ± 21.6 171+68
−65 1.81 ± 0.88 241.3 ± 11.9 419+75

−68 1.76 ± 0.85

(16) n = 0 3779.6 ± 2.0 25.3 ± 6.6 31.9 200.4 ± 14.7 137 ± 87 2.20 ± 0.93 230.3 ± 33.0 461 ± 73 2.47 ± 1.37

(16) n = 1 3779.6 ± 1.9 25.3 ± 6.3 31.8 176.1 ± 16.6 154 ± 113 2.14 ± 0.91 239.4 ± 14.7 433 ± 74 1.96 ± 0.96

(16) n = 3 3779.1 ± 1.7 25.2 ± 4.4 32.9 126.0 ± 15.8 139 ± 88 1.89 ± 0.90 282.0 ± 16.9 501 ± 89 2.54 ± 0.91

Table 5
Correction to fit results compensating the bias due to the background admixture.

Correction Solution 1 Solution 2

δM , MeV −0.06±0.06 −0.06±0.06

δΓ , MeV −0.4±0.3 −0.4±0.3

δΓee , % −3.9±2.9 −1.5±1.1

δσ N R
D D

, % +1.5±0.5 +1.5±0.5

δR2004
uds , % −0.5±0.3 −0.5±0.3

δR2006
uds , % −2.5±1.0 −2.5±1.0

noting that interference of the ψ(3770) structure with the con-
tinuum D D amplitude should be considered for any shape as-
sumed.

4.3. Correction for residual background

The residual machine background is about 2% of the observed
uds cross section for the scan of 2006 and five time less for the
scans of 2004 (Section 6.3 of the preceding Letter). The estimated
numbers of background events are 445 ± 97 and 24 ± 7, respec-
tively, whereas the total number of multihadron events selected
above the D D threshold is 33678.

To evaluate the impact of the residual background on the re-
sulting fit parameters, the background admixture was changed in
a controllable way. To do so, we prepared a few samples of back-
ground events passing some loose selection criteria but rejected by
the multihadron ones. At each data point i the number of multi-
hadron events Nmh

i was replaced with Nmh
i + f · Nbg

i , where Nbg
i

is the number of events in the background sample The fits with
the modified number of events show that the variations of all
fit parameters are proportional to f in the case | f | · Nbg

i � Nmh
i .

Selecting the negative f values at which the total number of sub-
tracted events matches the expected background admixture and
taking into account a small detection efficiency change, we obtain
the corrections for the fit parameters presented in Table 5. The
systematic uncertainties quoted include those of the background
admixture estimate and the variation of corrections obtained using
different background samples.

Table 6
Systematic uncertainties on the ψ(3770) mass, total width and electron partial
width. For the latter the uncertainties of two solutions are presented where dif-
ferent. The uncertainty on the nonresonant D D cross section is also presented.

Source M [MeV] Γ [MeV] Γee [%] σ N R
D D

[%]

Theoretical uncertainties and external data precision

BnD D
+0.0
−0.5

+0.0
−0.2

+8.8
−0 /+0

−2.3
+0
−12.

R0 value in Γ (W ) 0.3 0.3 2. 1.5

ΓD0 D0 /ΓD+ D− 0.1 0.1 0.4 0.8

D , D masses 0.06 0.04 0.3 0.5

D Dπ cross section 0.15 0.05 1. 2.

Detector and accelerator related uncertainties

Det. efficiency variation 0.03 0.04 2.4 5.

Hadronic event selection 0.3 0.3 3. 5.

Residual background 0.06 0.3 2.9 3.

Luminosity measurement 0.1 0.1 2. 2.

Beam energy 0.03 – – –

Sum in quadrature +0.48
−0.69

+0.54
−0.58

+10.5
−5.7 /+5.7

−6.1
+8.
−14.

4.4. Systematic uncertainties

The main sources of systematic uncertainty in ψ(3770) param-
eters are listed in Table 6.

When the resonance–continuum interference is taken into ac-
count, the multihadron cross section becomes rather sensitive to
the non-D D fraction of ψ(3770) decays. It was varied from zero
to 0.16 as was mentioned in Section 3.2. The variations of the
ψ(3770) mass and total width were 0.3 and 0.1 MeV, respectively.
The shift of the electron width was +8.8% for the first solution
and −2.3% for the second one.

The uncertainty on the R0 value used to specify the energy-
dependent width (8), (9) of about 25% (Refs. [30,31]) leads to these
of 0.3 MeV both in the mass and total width. When the interfer-
ence is ignored, the sensitivity to R0 variations reduces by a factor
of 3.

The uncertainties due to that of the branching fraction ratio for
D0 D0 and D+D− are about 0.1 MeV for the mass and total width.
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Approximately the same uncertainties are obtained because of the
D meson masses. The estimates were obtained by variation of the
values within their errors quoted by PDG.

To estimate uncertainties due to the inaccuracy of the D Dπ
cross section treatment at the edge of the energy range of the ex-
periment, we used two methods: shrinking of the fit range and
assumption of the linear dependence on the D-meson c.m. veloc-
ity instead of the cubical one in Eq. (10). The latter corresponds
to variation of the effective interaction radius R0 for D Dπ states
from zero to infinity. The variations of the mass, total width and
electron width do not exceed 0.15 MeV, 0.05 MeV and 1%, respec-
tively.

The systematic uncertainties due to the energy dependence of
the detection efficiencies shown in Table 2 can be neglected in all
cases except εuds . The latter together with the energy dependence
of the radiative correction factor and possible Ruds variation deter-
mine the power in the expression (18) used to parameterize the
light quark contribution to the multihadron cross section. The ra-
diative correction factor 1 + δRC

uds = 1.125 ± 0.022 was calculated
according to Ref. [18] using the vacuum polarization data compi-
lation by the CMD-2 group reviewed in Ref. [38]. The error quoted
includes the uncertainty of the detection efficiency dependence on
the mass of the hadronic system produced via ISR and that of the
vacuum polarization data. We explicitly considered the J/ψ tail
in the cross section (1), thus the correction factor is 14–9% less
than that used in Ref. [32] and its variation in the experiment en-
ergy range does not reach 0.1%. The precise R measurements at
W = 3.07 and 3.65 MeV [33] do not indicate essential Ruds varia-
tion, thus we concluded that the uds efficiency variation dominates
in the uncertainty of the power 1 − δ. Performing the fits with dif-
ferent values of δ we evaluated the uncertainty of the ψ(3770)

parameters as 0.03 MeV, 0.04 MeV and 2.4% for the mass, total
width and electron width, respectively. Compared to that, the en-
ergy dependence of εD D gives only a 0.5% bias of the electron
width and a few keV shifts of the mass and total width.

The sensitivity of the mass and width to the criteria of the
multihadron event selection was checked by changing cuts on the
energy deposited in the calorimeter and conditions on the number
of tracks. The results were stable within 0.3 MeV. The detection
efficiency uncertainty due to inaccuracy of the D-meson decay ra-
tios [23] used for the simulation contributes 2% to the electron
width uncertainty. The dependence on the choice of the selection
criteria increases it up to 3%. The sensitivity to the event selection
criteria is partially due to the influence of the residual background.
We ignore that and treat the background correction as an inde-
pendent uncertainty source which makes the uncertainty estimates
more conservative.

Uncertainties due to the luminosity measurement instability are
less than 0.1 MeV for the mass and width. The accuracy of the ab-
solute luminosity measurements discussed in the preceding Letter
contributes less than 2% to the electron width uncertainty. The un-
certainty on ψ(3770) mass due to the beam energy determination
does not exceed 30 keV.

5. Summary

The parameters of the ψ(3770) meson have been measured us-
ing the data collected with the KEDR detector at the VEPP-4M
e+e− collider. Interference of resonant and nonresonant production
essential in the near-threshold region has been taken into account.

Our final results on the mass and width of ψ(3770) are:

M = 3779.2+1.8
−1.7

+0.5
−0.7

+0.3
−0.3 MeV,

Γ = 24.9+4.6
−4.0

+0.5
−0.6

+0.2
−0.9 MeV.

The corrections applied to the fit results are listed in Table 5.
The third error arises from the model dependence. It was esti-
mated comparing the results obtained under the assumption of
vector dominance in the D-meson form factor (quoted values)
and under a few alternative assumptions which do not imply vec-
tor dominance. The quoted model errors do not include possi-
ble deviations of the resonance shape from the Breit–Wigner one
with usual assumptions about the total width energy dependence,
which are predicted, e.g., in the coupled-channel model [29].

The result on the ψ(3770) mass agrees with that by BaBar
also taking into account interference (Ref. [10]) and is significantly
higher than all results obtained ignoring this effect. The mass val-
ues obtained studying B-meson decays by BaBar [9] and Belle [8]
are lower but do not contradict to our measurement.

We got two possible solutions for the ψ(3770) electron partial
width and the radiatively corrected nonresonant D D cross section
at the mass of ψ(3770):

(1) Γee = 154+79
−58

+17
−9

+13
−25 eV, σ N R

D D
= 1.4 ± 0.7+0.1

−0.2
+0.3
−0.2 nb,

(2) Γee = 414+72
−80

+24
−26

+90
−10 eV, σ N R

D D
= 1.3 ± 0.7+0.1

−0.2
+0.6
−0.2 nb.

The phase shifts of the ψ(3770) amplitude relative to the nega-
tive nonresonant amplitude are 171 ± 17 and 240 ± 9 degrees for
Solutions (1) and (2), respectively.

Most of potential models support the first solution and can
barely tolerate the second one. The increase of the ψ(3770) mass
according to the BaBar and KEDR measurements implies the de-
crease of the 2S–1D mixing used in potential models to rise the
electron width value above 100 eV (Refs. [39–42] and the re-
views [43,44]). The correct choice of the true solution is extremely
important for a determination of the non-D D fraction of ψ(3770)

decays.
Because of the large uncertainty the Solution (1) does not con-

tradict formally to the previously published results, which do not
take the interference effect into account, the Solution (2) is only
two standard deviations higher than the current world average.
However, the qualitative consideration and numerical estimates
confirm that the impact of the resonance–continuum interference
on the resulting electron width value is large, therefore the reso-
nance parameters obtained taking into account interference cannot
be directly compared with the corresponding values obtained ig-
noring this effect.
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